1
|
Agresti A and Bianchi ME: HMGB proteins
and gene expression. Curr Opin Genet Dev. 13:170–178. 2003.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Muller S, Scaffidi P, Degryse B, et al:
New EMBO members’ review: the double life of HMGB1 chromatin
protein: architectural factor and extracellular signal. EMBO J.
20:4337–4340. 2001. View Article : Google Scholar
|
3
|
Lotze MT and Tracey KJ: High-mobility
group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.
Nat Rev Immunol. 5:331–342. 2005. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Yamanaka S, Katayama E, Yoshioka K, Nagaki
S, Yoshida M and Teraoka H: Nucleosome linker proteins HMGB1 and
histone H1 differentially enhance DNA ligation reactions. Biochem
Biophys Res Commun. 292:268–273. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nagaki S, Yamamoto M, Yumoto Y, Shirakawa
H, Yoshida M and Teraoka H: Non-histone chromosomal proteins HMG1
and 2 enhance ligation reaction of DNA double-strand breaks.
Biochem Biophys Res Commun. 246:137–141. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Campana L, Bosurgi L and Rovere-Querini P:
HMGB1: a two-headed signal regulating tumor progression and
immunity. Curr Opin Immunol. 20:518–523. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang H, Gao XS, Zhao J, et al:
Differential gene expression profiles of DNA repair genes in
esophageal cancer cells after X-ray irradiation. Chin J Cancer.
29:865–872. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Blackburn EH: Switching and signaling at
the telomere. Cell. 106:661–673. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim NW, Piatyszek MA, Prowse KR, et al:
Specific association of human telomerase activity with immortal
cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xiao CY, Zhou FX, Liu SQ, Xie CH, Dai J
and Zhou YF: Correlations of telomere length and telomerase
activity to radiosensitivity of human laryngeal squamous carcinoma
cells. Ai Zheng. 24:653–656. 2005.(In Chinese). PubMed/NCBI
|
11
|
Schrumpfova PP, Fojtova M, Mokros P,
Grasser KD and Fajkus J: Role of HMGB proteins in chromatin
dynamics and telomere maintenance in Arabidopsis thaliana. Curr
Protein Pept Sci. 12:105–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Polanska E, Dobsakova Z, Dvorackova M,
Fajkus J and Stros M: HMGB1 gene knockout in mouse embryonic
fibroblasts results in reduced telomerase activity and telomere
dysfunction. Chromosoma. 121:419–431. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yao X, Zhao G, Yang H, Hong X, Bie L and
Liu G: Overexpression of high-mobility group box 1 correlates with
tumor progression and poor prognosis in human colorectal carcinoma.
J Cancer Res Clin Oncol. 136:677–684. 2010. View Article : Google Scholar
|
14
|
Tang T, Zhou FX, Lei H, et al: Increased
expression of telomere-related proteins correlates with resistance
to radiation in human laryngeal cancer cell lines. Oncol Rep.
21:1505–1509. 2009.PubMed/NCBI
|
15
|
Cawthon RM: Telomere measurement by
quantitative PCR. Nucleic Acids Res. 30:e472002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiao Y, Wang HC and Fan SJ: Growth
suppression and radiosensitivity increase by HMGB1 in breast
cancer. Acta Pharmacol Sin. 28:1957–1967. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhong YH, Liao ZK, Zhou FX, et al:
Telomere length inversely correlates with radiosensitivity in human
carcinoma cells with the same tissue background. Biochem Biophys
Res Commun. 367:84–89. 2008. View Article : Google Scholar
|
18
|
Wang W, Yang L, Hu L, et al: Inhibition of
UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast
cancer cells by increasing hTERT expression and activity. PLoS One.
8:e646602013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shimura T, Kakuda S, Ochiai Y, et al:
Acquired radioresistance of human tumor cells by
DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene.
29:4826–4837. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hurley PJ and Bunz F: ATM and ATR:
components of an integrated circuit. Cell Cycle. 6:414–417. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Rainey MD, Charlton ME, Stanton RV and
Kastan MB: Transient inhibition of ATM kinase is sufficient to
enhance cellular sensitivity to ionizing radiation. Cancer Res.
68:7466–7474. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Alao JP and Sunnerhagen P: The ATM and ATR
inhibitors CGK733 and caffeine suppress cyclin D1 levels and
inhibit cell proliferation. Radiat Oncol. 4:512009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gamper AM, Rofougaran R, Watkins SC,
Greenberger JS, Beumer JH and Bakkenist CJ: ATR kinase activation
in G1 phase facilitates the repair of ionizing radiation-induced
DNA damage. Nucleic Acids Res. 41:10334–10344. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qiang W, Wu Q, Zhou F, Xie C, Wu C and
Zhou Y: Suppression of telomere-binding protein TPP1 resulted in
telomere dysfunction and enhanced radiation sensitivity in
telomerase-negative osteosarcoma cell line. Biochem Biophys Res
Commun. 445:363–368. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
O’Connor MS, Safari A, Xin H, Liu D and
Songyang Z: A critical role for TPP1 and TIN2 interaction in
high-order telomeric complex assembly. Proc Natl Acad Sci USA.
103:11874–11879. 2006. View Article : Google Scholar
|
26
|
Valls-Bautista C, Pinol-Felis C,
Rene-Espinet JM, Buenestado-Garcia J and Vinas-Salas J: Telomeric
repeat factor 1 protein levels correlates with telomere length in
colorectal cancer. Rev Esp Enferm Dig. 104:530–536. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Li Z, Yang X, Xia N, et al: PTOP and TRF1
help enhance the radio resistance in breast cancer cell. Cancer
Cell Int. 14:72014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huda N, Abe S, Gu L, Mendonca MS, Mohanty
S and Gilley D: Recruitment of TRF2 to laser-induced DNA damage
sites. Free Radic Biol Med. 53:1192–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hu L, Wu QQ, Wang WB, et al: Suppression
of Ku80 correlates with radiosensitivity and telomere shortening in
the U2OS telomerase-negative osteosarcoma cell line. Asian Pac J
Cancer Prev. 14:795–799. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Celli GB and de Lange T: DNA processing is
not required for ATM-mediated telomere damage response after TRF2
deletion. Nat Cell Biol. 7:712–718. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Smolarczyk R, Cichon T, Jarosz M and Szala
S: HMGB1 - its role in tumor progression and anticancer therapy.
Postepy Hig Med Dosw (Online). 66:913–920. 2012.(In Polish).
View Article : Google Scholar
|