1
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Louis DN, Ohgaki H, Wiestler OD, et al:
The 2007 WHO classification of tumours of the central nervous
system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Beauchesne P: Fotemustine: a
third-generation nitrosourea for the treatment of recurrent
malignant gliomas. Cancers (Basel). 4:77–87. 2012. View Article : Google Scholar
|
4
|
Tanase CP, Enciu AM, Mihai S, Neagu AI,
Calenic B and Cruceru ML: Anti-cancer therapies in high grade
gliomas. Curr Proteomics. 10:246–260. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wingo PA, Tong T and Bolden S: Cancer
statistics, 1995. CA Cancer J Clin. 45:8–30. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Esteller M: Non-coding RNAs in human
disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheng Q, Yi B, Wang A and Jiang X:
Exploring and exploiting the fundamental role of microRNAs in tumor
pathogenesis. Onco Targets Ther. 6:1675–1684. 2013.PubMed/NCBI
|
8
|
Hu J, Guo H, Li H, et al: MiR-145
regulates epithelial to mesenchymal transition of breast cancer
cells by targeting Oct4. PLoS One. 7:e459652012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang F, Xia J, Wang N and Zong H: miR-145
inhibits proliferation and invasion of esophageal squamous cell
carcinoma in part by targeting c-Myc. Onkologie. 36:754–758.
2013.PubMed/NCBI
|
10
|
Cho WC, Chow AS and Au JS: MiR-145
inhibits cell proliferation of human lung adenocarcinoma by
targeting EGFR and NUDT1. RNA Biol. 8:125–131. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sachdeva M and Mo YY: MicroRNA-145
suppresses cell invasion and metastasis by directly targeting mucin
1. Cancer Res. 70:378–387. 2010. View Article : Google Scholar :
|
12
|
Seals DF and Courtneidge SA: The ADAMs
family of metalloproteases: multidomain proteins with multiple
functions. Genes Dev. 17:7–30. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee DC, Sunnarborg SW, Hinkle CL, et al:
TACE/ADAM17 processing of EGFR ligands indicates a role as a
physiological convertase. Ann NY Acad Sci. 995:22–38. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wells A: EGF receptor. Int J Biochem Cell
Biol. 31:637–643. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lal A, Glazer CA, Martinson HM, et al:
Mutant epidermal growth factor receptor up-regulates molecular
effectors of tumor invasion. Cancer Res. 62:3335–3339.
2002.PubMed/NCBI
|
16
|
Datta SR, Brunet A and Greenberg ME:
Cellular survival: a play in three Akts. Genes Dev. 13:2905–2927.
1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Maher EA, Furnari FB, Bachoo RM, et al:
Malignant glioma: genetics and biology of a grave matter. Genes
Dev. 15:1311–1333. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wechsler-Reya R and Scott MP: The
developmental biology of brain tumors. Annu Rev Neurosci.
24:385–428. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mineo JF, Quintin-Roue I, Lucas B,
Buburusan V and Besson G: Glioblastomas: clinical study and search
for prognostic factors. Neurochirurgie. 48:500–509. 2002.(In
French).
|
20
|
Lu Y, Chopp M, Zheng X, Katakowski M,
Buller B and Jiang F: MiR-145 reduces ADAM17 expression and
inhibits in vitro migration and invasion of glioma cells. Oncol
Rep. 29:67–72. 2013.
|
21
|
Nieto-Sampedro M, Valle-Argos B,
Gomez-Nicola D, Fernandez-Mayoralas A and Nieto-Diaz M: Inhibitors
of glioma growth that reveal the tumour to the immune system. Clin
Med Insights Oncol. 5:265–314. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zheng X, Jiang F, Katakowski M, Lu Y and
Chopp M: ADAM17 promotes glioma cell malignant phenotype. Mol
Carcinog. 51:150–164. 2012. View
Article : Google Scholar
|
23
|
Zheng X, Jiang F, Katakowski M, Zhang ZG,
Lu QE and Chopp M: ADAM17 promotes breast cancer cell malignant
phenotype through EGFR-PI3K-AKT activation. Cancer Biol Ther.
8:1045–1054. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Doberstein K, Steinmeyer N, Hartmetz AK,
et al: MicroRNA-145 targets the metalloprotease ADAM17 and is
suppressed in renal cell carcinoma patients. Neoplasia. 15:218–230.
2013.PubMed/NCBI
|
25
|
Ling H, Fabbri M and Calin GA: MicroRNAs
and other non-coding RNAs as targets for anticancer drug
development. Nat Rev Drug Discov. 12:847–865. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Furuya M, Nishiyama M, Kasuya Y, Kimura S
and Ishikura H: Pathophysiology of tumor neovascularization. Vasc
Health Risk Manag. 1:277–290. 2005. View Article : Google Scholar
|
27
|
Folkman J: Angiogenesis. Annu Rev Med.
57:1–18. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ausprunk DH and Folkman J: Migration and
proliferation of endothelial cells in preformed and newly formed
blood vessels during tumor angiogenesis. Microvasc Res. 14:53–65.
1977. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bergers G and Benjamin LE: Tumorigenesis
and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Perry BN and Arbiser JL: The duality of
angiogenesis: implications for therapy of human disease. J Invest
Dermatol. 126:2160–2166. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Goldman CK, Kim J, Wong WL, King V, Brock
T and Gillespie GY: Epidermal growth factor stimulates vascular
endo-thelial growth factor production by human malignant glioma
cells: a model of glioblastoma multiforme pathophysiology. Mol Biol
Cell. 4:121–133. 1993. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ruhe JE, Streit S, Hart S and Ullrich A:
EGFR signaling leads to downregulation of PTP-LAR via TACE-mediated
proteolytic processing. Cell Signal. 18:1515–1527. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mendelsohn J and Baselga J: The EGF
receptor family as targets for cancer therapy. Oncogene.
19:6550–6565. 2000. View Article : Google Scholar
|
34
|
Ullrich A, Coussens L, Hayflick JS, et al:
Human epidermal growth factor receptor cDNA sequence and aberrant
expression of the amplified gene in A431 epidermoid carcinoma
cells. Nature. 309:418–425. 1984. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Chaffanet M, Chauvin C, Laine M, et al:
EGF receptor amplification and expression in human brain tumours.
Eur J Cancer. 28:11–17. 1992. View Article : Google Scholar : PubMed/NCBI
|
36
|
Horak E, Smith K, Bromley L, et al: Mutant
p53, EGF receptor and c-erbB-2 expression in human breast cancer.
Oncogene. 6:2277–2284. 1991.PubMed/NCBI
|
37
|
Haas-Kogan DA, Prados MD, Lamborn KR,
Tihan T, Berger MS and Stokoe D: Biomarkers to predict response to
epidermal growth factor receptor inhibitors. Cell Cycle.
4:1369–1372. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kenny PA: Three-dimensional extracellular
matrix culture models of EGFR signalling and drug response. Biochem
Soc Trans. 35:665–668. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kenny PA: TACE: a new target in epidermal
growth factor receptor dependent tumors. Differentiation.
75:800–808. 2007. View Article : Google Scholar : PubMed/NCBI
|