1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar
|
2
|
Feldman BJ and Feldman D: The development
of androgen-independent prostate cancer. Nat Rev Cancer. 1:34–45.
2001. View Article : Google Scholar
|
3
|
Stangelberger A, Schally AV and Djavan B:
New treatment approaches for prostate cancer based on peptide
analogues. Eur Urol. 53:890–900. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fischer R, Hill RM and Warshay D: Effects
of psychodysleptic drug psilocybin on visual perception. Changes in
brightness preference. Experientia. 25:166–169. 1969. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nagalla SR, Barry BJ, Falick AM, Gibson
BW, Taylor JE, Dong JZ and Spindel ER: There are three distinct
forms of bombesin. Identification of [Leu13]bombesin,
[Phe13]bombesin, and [Ser3, Arg10, Phe13]bombesin in the frog
Bombina orientalis. J Biol Chem. 271:7731–7737. 1996.PubMed/NCBI
|
6
|
Albrecht M, Doroszewicz J, Gillen S, Gomes
I, Wilhelm B, Stief T and Aumüller G: Proliferation of prostate
cancer cells and activity of neutral endopeptidase is regulated by
bombesin and IL-1beta with IL-1beta acting as a modulator of
cellular differentiation. Prostate. 58:82–94. 2004. View Article : Google Scholar
|
7
|
Aprikian AG, Tremblay L, Han K and
Chevalier S: Bombesin stimulates the motility of human
prostate-carcinoma cells through tyrosine phosphorylation of focal
adhesion kinase and of integrin-associated proteins. Int J Cancer.
72:498–504. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nagakawa O, Ogasawara M, Fujii H, Murakami
K, Murata J, Fuse H and Saiki I: Effect of prostatic neuropeptides
on invasion and migration of PC-3 prostate cancer cells. Cancer
Lett. 133:27–33. 1998. View Article : Google Scholar
|
9
|
Bologna M, Festuccia C, Muzi P, Biordi L
and Ciomei M: Bombesin stimulates growth of human prostatic cancer
cells in vitro. Cancer. 63:1714–1720. 1989. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ishimaru H, Kageyama Y, Hayashi T, Nemoto
T, Eishi Y and Kihara K: Expression of matrix metalloproteinase-9
and bombesin/gastrin-releasing peptide in human prostate cancers
and their lymph node metastases. Acta Oncol. 41:289–296. 2002.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Festuccia C, Angelucci A, Gravina G,
Eleuterio E, Vicentini C and Bologna M: Bombesin-dependent
pro-MMP-9 activation in prostatic cancer cells requires beta1
integrin engagement. Exp Cell Res. 280:1–11. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Markwalder R and Reubi JC:
Gastrin-releasing peptide receptors in the human prostate: relation
to neoplastic transformation. Cancer Res. 59:1152–1159.
1999.PubMed/NCBI
|
13
|
Fournier P, Dumulon-Perreault V,
Ait-Mohand S, Langlois R, Bénard F, Lecomte R and Guérin B:
Comparative study of
64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6–14) monomer
and dimers for prostate cancer PET imaging. EJNMMI Res. 2:82012.
View Article : Google Scholar
|
14
|
Zhang H, Abiraj K, Thorek DL, Waser B,
Smith-Jones PM, Honer M, Reubi JC and Maecke HR: Evolution of
bombesin conjugates for targeted PET imaging of tumors. PLoS One.
7:e440462012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Varasteh Z, Aberg O, Velikyan I, Lindeberg
G, Sörensen J, Larhed M, Antoni G, Sandström M, Tolmachev V and
Orlova A: In vitro and in vivo evaluation of a
18F-labeled high affinity NOTA conjugated bombesin
antagonist as a PET ligand for GRPR-targeted tumor imaging. PLoS
One. 8:e819322013. View Article : Google Scholar
|
16
|
Baidoo KE, Lin KS, Zhan Y, Finley P,
Scheffel U and Wagner HN Jr: Design, synthesis, and initial
evaluation of high-affinity technetium bombesin analogues.
Bioconjug Chem. 9:218–225. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Karra SR, Schibli R, Gali H, Katti KV,
Hoffman TJ, Higginbotham C, Sieckman GL and Volkert WA:
99mTc-labeling and in vivo studies of a bombesin
analogue with a novel water-soluble dithiadiphosphine-based
bifunctional chelating agent. Bioconjug Chem. 10:254–260. 1999.
View Article : Google Scholar : PubMed/NCBI
|
18
|
La Bella R, Garcia-Garayoa E, Langer M,
Bläuenstein P, Beck-Sickinger AG and Schubiger PA: In vitro and in
vivo evaluation of a 99mTc(I)-labeled bombesin analogue
for imaging of gastrin releasing peptide receptor-positive tumors.
Nucl Med Biol. 29:553–560. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
La Bella R, Garcia-Garayoa E, Bahler M,
Bläuenstein P, Schibli R, Conrath P, Tourwé D and Schubiger PA: A
99mTc(I)-postlabeled high affinity bombesin analogue as
a potential tumor imaging agent. Bioconjug Chem. 13:599–604. 2002.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Rogers BE, Bigott HM, McCarthy DW, Della
Manna D, Kim J, Sharp TL and Welch MJ: MicroPET imaging of a
gastrin-releasing peptide receptor-positive tumor in a mouse model
of human prostate cancer using a 64Cu-labeled bombesin
analogue. Bioconjug Chem. 14:756–763. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Parry JJ, Andrews R and Rogers BE:
MicroPET imaging of breast cancer using radiolabeled bombesin
analogs targeting the gastrin-releasing peptide receptor. Breast
Cancer Res Treat. 101:175–183. 2007. View Article : Google Scholar
|
22
|
Lane SR, Nanda P, Rold TL, Sieckman GL,
Figueroa SD, Hoffman TJ, Jurisson SS and Smith CJ: Optimization,
biological evaluation and microPET imaging of copper-64-labeled
bombesin agonists, [64Cu-NO2A-(X)-BBN(7-14)NH2], in a
prostate tumor xenografted mouse model. Nucl Med Biol. 37:751–761.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Parry JJ, Kelly TS, Andrews R and Rogers
BE: In vitro and in vivo evaluation of 64Cu-labeled
DOTA-linker-bombesin(7–14) analogues containing different amino
acid linker moieties. Bioconjug Chem. 18:1110–1117. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Haubner R, Wester HJ, Weber WA, Mang C,
Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H and
Schwaiger M: Noninvasive imaging of alpha(v)beta3 integrin
expression using 18F-labeled RGD-containing glycopeptide
and positron emission tomography. Cancer Res. 61:1781–1785.
2001.PubMed/NCBI
|
25
|
Haubner R, Wester HJ, Burkhart F,
Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H and
Schwaiger M: Glycosylated RGD-containing peptides: tracer for tumor
targeting and angiogenesis imaging with improved biokinetics. J
Nucl Med. 42:326–336. 2001.PubMed/NCBI
|
26
|
Haubner R, Kuhnast B, Mang C, Weber WA,
Kessler H, Wester HJ and Schwaiger M: [18F]Galacto-RGD:
synthesis, radiolabeling, metabolic stability, and radiation dose
estimates. Bioconjug Chem. 15:61–69. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Haubner R, Weber WA, Beer AJ, Vabuliene E,
Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H
and Schwaiger M: Noninvasive visualization of the activated
alphavbeta3 integrin in cancer patients by positron emission
tomography and [18F]Galacto-RGD. PLoS Med. 2:e702005.
View Article : Google Scholar
|
28
|
Wu AM, Yazaki PJ, Tsai Sw, Nguyen K,
Anderson AL, McCarthy DW, Welch MJ, Shively JE, Williams LE,
Raubitschek AA, Wong JY, Toyokuni T, Phelps ME and Gambhir SS:
High-resolution microPET imaging of carcinoembryonic
antigen-positive xenografts by using a copper-64-labeled engineered
antibody fragment. Proc Natl Acad Sci USA. 97:8495–8500. 2000.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Williams HA, Robinson S, Julyan P, Zweit J
and Hastings D: A comparison of PET imaging characteristics of
various copper radioisotopes. Eur J Nucl Med Mol Imaging.
32:473–480. 2005. View Article : Google Scholar
|
30
|
Kim JY, Park H, Lee JC, Kim KM, Lee KC, Ha
HJ, Choi TH, An GI and Cheon GJ: A simple Cu-64 production and its
application of Cu-64 ATSM. Appl Radiat Isot. 67:1190–1194. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Craft JM, De Silva RA, Lears KA, Andrews
R, Liang K, Achilefu S and Rogers BE: In vitro and in vivo
evaluation of a 64Cu-labeled NOTA-Bn-SCN-Aoc-bombesin
analogue in gastrin-releasing peptide receptor expressing prostate
cancer. Nucl Med Biol. 39:609–616. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K,
Li J, Tian M, Zhang H and Cheng Z: A comparative study of
radiolabeled bombesin analogs for the PET imaging of prostate
cancer. J Nucl Med. 54:2132–2138. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mansi R, Wang X, Forrer F, Waser B,
Cescato R, Graham K, Borkowski S, Reubi JC and Maecke HR:
Development of a potent DOTA-conjugated bombesin antagonist for
targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging.
38:97–107. 2011. View Article : Google Scholar
|
34
|
Roivainen A, Kähkönen E, Luoto P,
Borkowski S, Hofmann B, Jambor I, Lehtiö K, Rantala T, Rottmann A,
Sipilä H, Sparks R, Suilamo S, Tolvanen T, Valencia R and Minn H:
Plasma pharmacokinetics, whole-body distribution, metabolism, and
radiation dosimetry of 68Ga bombesin antagonist BAY
86-7548 in healthy men. J Nucl Med. 54:867–872. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kähkönen E, Jambor I, Kemppainen J, Lehtiö
K, Grönroos TJ, Kuisma A, Luoto P, Sipilä HJ, Tolvanen T, Alanen K,
Silén J, Kallajoki M, Roivainen A, Schäfer N, Schibli R, Dragic M,
Johayem A, Valencia R, Borkowski S and Minn H: In vivo imaging of
prostate cancer using [68Ga]-labeled bombesin analog
BAY86-7548. Clin Cancer Res. 19:5434–5443. 2013. View Article : Google Scholar
|
36
|
Jackson AB, Nanda PK, Rold TL, Sieckman
GL, Szczodroski AF, Hoffman TJ, Chen X and Smith CJ:
64Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH2: a heterodimeric
targeting vector for positron emission tomography imaging of
prostate cancer. Nucl Med Biol. 39:377–387. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Park JA and Kim JY: Recent advances in
radiopharmaceutical application of matched-pair radiometals. Curr
Top Med Chem. 13:458–469. 2013. View Article : Google Scholar : PubMed/NCBI
|