Update on Epstein-Barr virus and gastric cancer (Review)
- Authors:
- Aya Shinozaki-Ushiku
- Akiko Kunita
- Masashi Fukayama
-
Affiliations: Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan - Published online on: January 28, 2015 https://doi.org/10.3892/ijo.2015.2856
- Pages: 1421-1434
This article is mentioned in:
Abstract
Epstein MA, Achong BG and Barr YM: Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1:702–703. 1964. View Article : Google Scholar : PubMed/NCBI | |
Young LS and Rickinson AB: Epstein-Barr virus: 40 years on. Nat Rev Cancer. 4:757–768. 2004. View Article : Google Scholar : PubMed/NCBI | |
Burke AP, Yen TS, Shekitka KM and Sobin LH: Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol. 3:377–380. 1990.PubMed/NCBI | |
Shibata D, Tokunaga M, Uemura Y, Sato E, Tanaka S and Weiss LM: Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am J Pathol. 139:469–474. 1991.PubMed/NCBI | |
Shibata D and Weiss LM: Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol. 140:769–774. 1992.PubMed/NCBI | |
Fukayama M, Hayashi Y, Iwasaki Y, et al: Epstein-Barr virus-associated gastric carcinoma and Epstein-Barr virus infection of the stomach. Lab Invest. 71:73–81. 1994.PubMed/NCBI | |
Marshall BJ and Warren JR: Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311–1315. 1984. View Article : Google Scholar : PubMed/NCBI | |
Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI and Blaser MJ: Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med. 325:1132–1136. 1991. View Article : Google Scholar : PubMed/NCBI | |
Parsonnet J, Friedman GD, Vandersteen DP, et al: Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 325:1127–1131. 1991. View Article : Google Scholar : PubMed/NCBI | |
Fukayama M and Ushiku T: Epstein-Barr virus-associated gastric carcinoma. Pathol Res Pract. 207:529–537. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen JN, He D, Tang F and Shao CK: Epstein-Barr virus-associated gastric carcinoma: a newly defined entity. J Clin Gastroenterol. 46:262–271. 2012. View Article : Google Scholar : PubMed/NCBI | |
Murphy G, Pfeiffer R, Camargo MC and Rabkin CS: Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology. 137:824–833. 2009. View Article : Google Scholar : PubMed/NCBI | |
Camargo MC, Kim WH, Chiaravalli AM, et al: Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut. 63:236–243. 2014. | |
Camargo MC, Murphy G, Koriyama C, et al: Determinants of Epstein-Barr virus-positive gastric cancer: an international pooled analysis. Br J Cancer. 105:38–43. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Kim SH, Han SH, An JS, Lee ES and Kim YS: Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. J Gastroenterol Hepatol. 24:354–365. 2009. View Article : Google Scholar : PubMed/NCBI | |
Truong CD, Feng W, Li W, et al: Characteristics of Epstein-Barr virus-associated gastric cancer: a study of 235 cases at a comprehensive cancer center in USA. J Exp Clin Cancer Res. 28:142009. View Article : Google Scholar | |
Chen JN, Jiang Y, Li HG, et al: Epstein-Barr virus genome polymorphisms of Epstein-Barr virus-associated gastric carcinoma in gastric remnant carcinoma in Guangzhou, southern China, an endemic area of nasopharyngeal carcinoma. Virus Res. 160:191–199. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koriyama C, Akiba S, Minakami Y and Eizuru Y: Environmental factors related to Epstein-Barr virus-associated gastric cancer in Japan. J Exp Clin Cancer Res. 24:547–553. 2005. | |
Camargo MC, Koriyama C, Matsuo K, et al: Case-case comparison of smoking and alcohol risk associations with Epstein-Barr virus-positive gastric cancer. Int J Cancer. 134:948–953. 2014. View Article : Google Scholar : | |
van Beek J, zur Hausen A, Klein Kranenbarg E, et al: EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol. 22:664–670. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga M and Land CE: Epstein-Barr virus involvement in gastric cancer: biomarker for lymph node metastasis. Cancer Epidemiol Biomarkers Prev. 7:449–450. 1998.PubMed/NCBI | |
Matsunou H, Konishi F, Hori H, et al: Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan. Cancer. 77:1998–2004. 1996. View Article : Google Scholar : PubMed/NCBI | |
Song HJ, Srivastava A, Lee J, et al: Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology. 139:84–92.e82. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koriyama C, Akiba S, Itoh T, et al: Prognostic significance of Epstein-Barr virus involvement in gastric carcinoma in Japan. Int J Mol Med. 10:635–639. 2002.PubMed/NCBI | |
Kijima Y, Ishigami S, Hokita S, et al: The comparison of the prognosis between Epstein-Barr virus (EBV)-positive gastric carcinomas and EBV-negative ones. Cancer Lett. 200:33–40. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga M, Land CE, Uemura Y, Tokudome T, Tanaka S and Sato E: Epstein-Barr virus in gastric carcinoma. Am J Pathol. 143:1250–1254. 1993.PubMed/NCBI | |
Chang MS, Lee HS, Kim HS, et al: Epstein-Barr virus and microsatellite instability in gastric carcinogenesis. J Pathol. 199:447–452. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaizaki Y, Hosokawa O, Sakurai S and Fukayama M: Epstein-Barr virus-associated gastric carcinoma in the remnant stomach: de novo and metachronous gastric remnant carcinoma. J Gastroenterol. 40:570–577. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Kim KM, Min BH, Lee JH, Rhee PL and Kim JJ: Epstein-Barr virus-associated lymphoepithelioma-like early gastric carcinomas and endoscopic submucosal dissection: case series. World J Gastroenterol. 20:1365–1370. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakamura S, Ueki T, Yao T, Ueyama T and Tsuneyoshi M: Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special reference to its detection by the polymerase chain reaction and in situ hybridization in 99 tumors, including a morphologic analysis. Cancer. 73:2239–2249. 1994. View Article : Google Scholar : PubMed/NCBI | |
Watanabe H, Enjoji M and Imai T: Gastric carcinoma with lymphoid stroma. Its morphologic characteristics and prognostic correlations. Cancer. 38:232–243. 1976. View Article : Google Scholar : PubMed/NCBI | |
Lauren P: The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histoclinical classification. Acta Pathol Microbiol Scand. 64:31–49. 1965. | |
Song HJ and Kim KM: Pathology of epstein-barr virus-associated gastric carcinoma and its relationship to prognosis. Gut Liver. 5:143–148. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shinozaki A, Ushiku T, Morikawa T, et al: Epstein-Barr virus-associated gastric carcinoma: a distinct carcinoma of gastric phenotype by claudin expression profiling. J Histochem Cytochem. 57:775–785. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Beek J, zur Hausen A, Snel SN, et al: Morphological evidence of an activated cytotoxic T-cell infiltrate in EBV-positive gastric carcinoma preventing lymph node metastases. Am J Surg Pathol. 30:59–65. 2006. View Article : Google Scholar | |
Kuzushima K, Nakamura S, Nakamura T, et al: Increased frequency of antigen-specific CD8+ cytotoxic T lymphocytes infiltrating an Epstein-Barr virus-associated gastric carcinoma. J Clin Invest. 104:163–171. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shinozaki A, Ushiku T and Fukayama M: Prominent Mott cell proliferation in Epstein-Barr virus-associated gastric carcinoma. Hum Pathol. 41:134–138. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ushiku T, Shinozaki A, Uozaki H, et al: Gastric carcinoma with osteoclast-like giant cells. Lymphoepithelioma-like carcinoma with Epstein-Barr virus infection is the predominant type. Pathol Int. 60:551–558. 2010. View Article : Google Scholar : PubMed/NCBI | |
Choi MG, Jeong JY, Kim KM, et al: Clinical significance of gastritis cystica profunda and its association with Epstein-Barr virus in gastric cancer. Cancer. 118:5227–5233. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsao SW, Tsang CM, Pang PS, Zhang G, Chen H and Lo KW: The biology of EBV infection in human epithelial cells. Semin Cancer Biol. 22:137–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rickinson AB: Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol. 26:99–115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Imai S, Nishikawa J and Takada K: Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol. 72:4371–4378. 1998.PubMed/NCBI | |
Hayashi K, Teramoto N, Akagi T, Sasaki Y and Suzuki T: In situ detection of Epstein-Barr virus in the gastric glands with intestinal metaplasia. Am J Gastroenterol. 91:14811996.PubMed/NCBI | |
Sugiura M, Imai S, Tokunaga M, et al: Transcriptional analysis of Epstein-Barr virus gene expression in EBV-positive gastric carcinoma: unique viral latency in the tumour cells. Br J Cancer. 74:625–631. 1996. View Article : Google Scholar : PubMed/NCBI | |
Luo B, Wang Y, Wang XF, et al: Expression of Epstein-Barr virus genes in EBV-associated gastric carcinomas. World J Gastroenterol. 11:629–633. 2005. View Article : Google Scholar : PubMed/NCBI | |
Strong MJ, Xu G, Coco J, et al: Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog. 9:e10033412013. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Morgan DR, Meyers MO, et al: Epstein-barr virus infected gastric adenocarcinoma expresses latent and lytic viral transcripts and has a distinct human gene expression profile. Infect Agent Cancer. 7:212012. View Article : Google Scholar : PubMed/NCBI | |
Shannon-Lowe C, Adland E, Bell AI, Delecluse HJ, Rickinson AB and Rowe M: Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol. 83:7749–7760. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iwakiri D and Takada K: Role of EBERs in the pathogenesis of EBV infection. Adv Cancer Res. 107:119–136. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iwakiri D, Eizuru Y, Tokunaga M and Takada K: Autocrine growth of Epstein-Barr virus-positive gastric carcinoma cells mediated by an Epstein-Barr virus-encoded small RNA. Cancer Res. 63:7062–7067. 2003.PubMed/NCBI | |
Shinozaki A, Sakatani T, Ushiku T, et al: Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 70:4719–4727. 2010. View Article : Google Scholar : PubMed/NCBI | |
Banerjee AS, Pal AD and Banerjee S: Epstein-Barr virus-encoded small non-coding RNAs induce cancer cell chemoresistance and migration. Virology. 443:294–305. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S and Masucci MG: The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA. 106:2313–2318. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Murakami M, Verma SC, et al: Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology. 410:64–75. 2011. View Article : Google Scholar | |
Saridakis V, Sheng Y, Sarkari F, et al: Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 18:25–36. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cheng TC, Hsieh SS, Hsu WL, Chen YF, Ho HH and Sheu LF: Expression of Epstein-Barr nuclear antigen 1 in gastric carcinoma cells is associated with enhanced tumorigenicity and reduced cisplatin sensitivity. Int J Oncol. 36:151–160. 2010. | |
Sivachandran N, Dawson CW, Young LS, Liu FF, Middeldorp J and Frappier L: Contributions of the Epstein-Barr virus EBNA1 protein to gastric carcinoma. J Virol. 86:60–68. 2012. View Article : Google Scholar : | |
Yin Q and Flemington EK: siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology. 346:385–393. 2006. View Article : Google Scholar | |
Hong M, Murai Y, Kutsuna T, et al: Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol. 132:1–8. 2006. View Article : Google Scholar | |
Ian MX, Lan SZ, Cheng ZF, Dan H and Qiong LH: Suppression of EBNA1 expression inhibits growth of EBV-positive NK/T cell lymphoma cells. Cancer Biol Ther. 7:1602–1606. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fukuda M, Ikuta K, Yanagihara K, et al: Effect of transforming growth factor-beta1 on the cell growth and Epstein-Barr virus reactivation in EBV-infected epithelial cell lines. Virology. 288:109–118. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hino R, Uozaki H, Inoue Y, et al: Survival advantage of EBV-associated gastric carcinoma: survivin up-regulation by viral latent membrane protein 2A. Cancer Res. 68:1427–1435. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gao Y, Luo B and Zhao Y: Construction and antiapoptosis activities of recombinant adenoviral Expression vector carrying EBV latent membrane protein 2A. Gastroenterol Res Pract. 2011:1828322011. View Article : Google Scholar : PubMed/NCBI | |
Pal AD, Basak NP, Banerjee AS and Banerjee S: Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis. 35:1592–1601. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hino R, Uozaki H, Murakami N, et al: Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res. 69:2766–2774. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Liang Q, Cheung KF, et al: Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer. 119:304–312. 2013. View Article : Google Scholar | |
Al-Mozaini M, Bodelon G, Karstegl CE, Jin B, Al-Ahdal M and Farrell PJ: Epstein-Barr virus BART gene expression. J Gen Virol. 90:307–316. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thornburg NJ, Kusano S and Raab-Traub N: Identification of Epstein-Barr virus RK-BARF0-interacting proteins and characterization of expression pattern. J Virol. 78:12848–12856. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoebe EK, Le Large TY, Greijer AE and Middeldorp JM: BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol. 23:367–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ and van den Brule AJ: Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 60:2745–2748. 2000.PubMed/NCBI | |
Wang Q, Tsao SW, Ooka T, et al: Anti-apoptotic role of BARF1 in gastric cancer cells. Cancer Lett. 238:90–103. 2006. View Article : Google Scholar | |
Wiech T, Nikolopoulos E, Lassman S, et al: Cyclin D1 expression is induced by viral BARF1 and is overexpressed in EBV-associated gastric cancer. Virchows Arch. 452:621–627. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chang MS, Kim DH, Roh JK, et al: Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric carcinoma cells through regulation of NF-kappaB. J Virol. 87:10515–10523. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kaneda A, Matsusaka K, Aburatani H and Fukayama M: Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res. 72:3445–3450. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsusaka K, Funata S, Fukayama M and Kaneda A: DNA methylation in gastric cancer, related to Helicobacter pylori and Epstein-Barr virus. World J Gastroenterol. 20:3916–3926. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yau TO, Tang CM and Yu J: Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: disease and treatments. World J Gastroenterol. 20:6448–6456. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kusano M, Toyota M, Suzuki H, et al: Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer. 106:1467–1479. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zong L and Seto Y: CpG island methylator phenotype, helicobacter pylori, Epstein-Barr virus, and microsatellite instability and prognosis in gastric cancer: a systematic review and meta-analysis. PLoS One. 9:e860972014. View Article : Google Scholar : PubMed/NCBI | |
Okada T, Nakamura M, Nishikawa J, et al: Identification of genes specifically methylated in Epstein-Barr virus-associated gastric carcinomas. Cancer Sci. 104:1309–1314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saito M, Nishikawa J, Okada T, et al: Role of DNA methylation in the development of Epstein-Barr virus-associated gastric carcinoma. J Med Virol. 85:121–127. 2013. View Article : Google Scholar | |
Chapel F, Fabiani B, Davi F, et al: Epstein-Barr virus and gastric carcinoma in Western patients: comparison of pathological parameters and p53 expression in EBV-positive and negative tumours. Histopathology. 36:252–261. 2000. View Article : Google Scholar : PubMed/NCBI | |
Matsusaka K, Kaneda A, Nagae G, et al: Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 71:7187–7197. 2011. View Article : Google Scholar : PubMed/NCBI | |
zur Hausen A, van Grieken NC, Meijer GA, et al: Distinct chromosomal aberrations in Epstein-Barr virus-carrying gastric carcinomas tested by comparative genomic hybridization. Gastroenterology. 121:612–618. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chan WY, Liu Y, Li CY, et al: Recurrent genomic aberrations in gastric carcinomas associated with Helicobacter pylori and Epstein-Barr virus. Diagn Mol Pathol. 11:127–134. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chong JM, Fukayama M, Hayashi Y, et al: Microsatellite instability in the progression of gastric carcinoma. Cancer Res. 54:4595–4597. 1994.PubMed/NCBI | |
Lee J, van Hummelen P, Go C, et al: High-throughput mutation profiling identifies frequent somatic mutations in advanced gastric adenocarcinoma. PLoS One. 7:e388922012. View Article : Google Scholar : PubMed/NCBI | |
Sukawa Y, Yamamoto H, Nosho K, et al: Alterations in the human epidermal growth factor receptor 2-phosphatidylinositol 3-kinase-v-Akt pathway in gastric cancer. World J Gastroenterol. 18:6577–6586. 2012. View Article : Google Scholar : PubMed/NCBI | |
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 513:202–209. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Yao X, Tang S, et al: Integrative identification of epstein-barr virus-associated mutations and epigenetic alterations in gastric cancer. Gastroenterology. 147:1350–1362.e1354. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Kan J, Yuen ST, et al: Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 43:1219–1223. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abe H, Maeda D, Hino R, et al: ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch. 461:367–377. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moritani S, Sugihara H, Kushima R and Hattori T: Different roles of p53 between Epstein-Barr virus-positive and -negative gastric carcinomas of matched histology. Virchows Arch. 440:367–375. 2002. View Article : Google Scholar : PubMed/NCBI | |
Park HY, Kang SY, Kang GH, et al: EBV infection and mismatch repair deficiency mediated by loss of hMLH1 expression contribute independently to the development of multiple synchronous gastric carcinomas. J Surg Oncol. 106:777–782. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dolan DE and Gupta S: PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 21:231–237. 2014.PubMed/NCBI | |
Naidoo J, Page DB and Wolchok JD: Immune modulation for cancer therapy. Br J Cancer. 11:2214–2219. 2014. View Article : Google Scholar | |
Marquitz AR, Mathur A, Shair KH and Raab-Traub N: Infection of Epstein-Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc Natl Acad Sci USA. 109:9593–9598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Park C, Kim HJ, et al: Deregulation of immune response genes in patients with Epstein-Barr virus-associated gastric cancer and outcomes. Gastroenterology. 148:137–147.e139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen BJ, Chapuy B, Ouyang J, et al: PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 19:3462–3473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Green MR, Rodig S, Juszczynski P, et al: Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 18:1611–1618. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim do N and Lee SK: Biogenesis of Epstein-Barr virus microRNAs. Mol Cell Biochem. 365:203–210. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pfeffer S, Zavolan M, Grasser FA, et al: Identification of virus-encoded microRNAs. Science. 304:734–736. 2004. View Article : Google Scholar : PubMed/NCBI | |
Barth S, Meister G and Grasser FA: EBV-encoded miRNAs. Biochim Biophys Acta. 1809:631–640. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chan JY, Gao W, Ho WK, Wei WI and Wong TS: Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Res. 32:3201–3210. 2012.PubMed/NCBI | |
Chen SJ, Chen GH, Chen YH, et al: Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS One. 5:e127452010. View Article : Google Scholar : PubMed/NCBI | |
Choi H, Lee H, Kim SR, Gho YS and Lee SK: Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol. 87:8135–8144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choy EY, Siu KL, Kok KH, et al: An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med. 205:2551–2560. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cosmopoulos K, Pegtel M, Hawkins J, et al: Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. J Virol. 83:2357–2367. 2009. View Article : Google Scholar : | |
Gourzones C, Gelin A, Bombik I, et al: Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J. 7:2712010. View Article : Google Scholar : PubMed/NCBI | |
Gourzones C, Ferrand FR, Amiel C, et al: Consistent high concentration of the viral microRNA BART17 in plasma samples from nasopharyngeal carcinoma patients - evidence of non-exosomal transport. Virol J. 10:1192013. View Article : Google Scholar : | |
Imig J, Motsch N, Zhu JY, et al: microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res. 39:1880–1893. 2011. View Article : Google Scholar : | |
Lung RW, Tong JH and To KF: Emerging roles of small Epstein-Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci. 14:17378–17409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Marquitz AR, Mathur A, Nam CS and Raab-Traub N: The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology. 412:392–400. 2011. View Article : Google Scholar : PubMed/NCBI | |
Motsch N, Alles J, Imig J, et al: MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One. 7:e421932012. View Article : Google Scholar : PubMed/NCBI | |
Nourse JP, Crooks P, Keane C, et al: Expression profiling of Epstein-Barr virus-encoded microRNAs from paraffin-embedded formalin-fixed primary Epstein-Barr virus-positive B-cell lymphoma samples. J Virol Methods. 184:46–54. 2012. View Article : Google Scholar : PubMed/NCBI | |
Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB and Steitz JA: EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 31:2207–2221. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vereide DT, Seto E, Chiu YF, et al: Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene. 33:1258–1264. 2014. View Article : Google Scholar | |
Wong AM, Kong KL, Tsang JW, Kwong DL and Guan XY: Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer. 118:698–710. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xia T, O’Hara A, Araujo I, et al: EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res. 68:1436–1442. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu JY, Pfuhl T, Motsch N, et al: Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol. 83:3333–3341. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qiu J and Thorley-Lawson DA: EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells. Proc Natl Acad Sci USA. 111:11157–11162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim do N, Chae HS, Oh ST, et al: Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol. 81:1033–1036. 2007. View Article : Google Scholar : | |
Marquitz AR, Mathur A, Chugh PE, Dittmer DP and Raab-Traub N: Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol. 88:1389–1393. 2014. View Article : Google Scholar : | |
Kim do N, Seo MK, Choi H, et al: Characterization of naturally Epstein-Barr virus-infected gastric carcinoma cell line YCCEL1. J Gen Virol. 94:497–506. 2013. View Article : Google Scholar | |
Qiu J, Cosmopoulos K, Pegtel M, et al: A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog. 7:e10021932011. View Article : Google Scholar : PubMed/NCBI | |
Skalsky RL, Corcoran DL, Gottwein E, et al: The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 8:e10024842012. View Article : Google Scholar : PubMed/NCBI | |
Lo AK, To KF, Lo KW, et al: Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA. 104:16164–16169. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barth S, Pfuhl T, Mamiani A, et al: Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36:666–675. 2008. View Article : Google Scholar : | |
Dolken L, Malterer G, Erhard F, et al: Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe. 7:324–334. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iizasa H, Wulff BE, Alla NR, et al: Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem. 285:33358–33370. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ambrosio MR, Navari M, Di Lisio L, et al: The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer. 9:122014. View Article : Google Scholar : PubMed/NCBI | |
Ramakrishnan R, Donahue H, Garcia D, et al: Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS One. 6:e272712011. View Article : Google Scholar : PubMed/NCBI | |
Hsu CY, Yi YH, Chang KP, Chang YS, Chen SJ and Chen HC: The Epstein-Barr virus-encoded microRNA miR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma. PLoS Pathog. 10:e10039742014. View Article : Google Scholar : PubMed/NCBI | |
Ross N, Gandhi MK and Nourse JP: The Epstein-Barr virus microRNA BART11-5p targets the early B-cell transcription factor EBF1. Am J Blood Res. 3:210–224. 2013.PubMed/NCBI | |
Haneklaus M, Gerlic M, Kurowska-Stolarska M, et al: Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol. 189:3795–3799. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jung YJ, Choi H, Kim H and Lee SK: MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol. 88:9027–9037. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin TC, Liu TY, Hsu SM and Lin CW: Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. Am J Pathol. 182:1865–1875. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lung RW, Tong JH, Sung YM, et al: Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia. 11:1174–1184. 2009.PubMed/NCBI |