1
|
Brodeur GM: Neuroblastoma: biological
insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Maris JM, Hogarty MD, Bagatell R and Cohn
SL: Neuroblastoma. Lancet. 369:2106–2120. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chemler SR: Phenanthroindolizidines and
phenanthroquinolizidines: promising alkaloids for anti-cancer
therapy. Curr Bioact Compd. 5:2–19. 2007. View Article : Google Scholar
|
4
|
Fu Y, Lee SK, Min HY, Lee T, Lee J, Cheng
M and Kim S: Synthesis and structure-activity studies of antofine
analogues as potential anticancer agents. Bioorg Med Chem Lett.
17:97–100. 2007. View Article : Google Scholar
|
5
|
Gao W, Bussom S, Grill SP, Gullen EA, Hu
YC, Huang X, Zhong S, Kaczmarek C, Gutierrez J, Francis S, et al:
Structure-activity studies of phenanthroindolizidine alkaloids as
potential antitumor agents. Bioorg Med Chem Lett. 17:4338–4342.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xi Z, Zhang R, Yu Z and Ouyang D: The
interaction between tylophorine B and TMV RNA. Bioorg Med Chem
Lett. 16:4300–4304. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu ZJ, Lv HN, Li HY, Zhang Y, Zhang HJ,
Su FQ, Si YK, Yu SS and Chen XG: Anticancer effect and
neurotoxicity of S-(+)-deoxytylophorinidine, a new
phenanthroindolizidine alkaloid that interacts with nucleic acids.
J Asian Nat Prod Res. 13:400–408. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lv H, Ren J, Ma S, Xu S, Qu J, Liu Z, Zhou
Q, Chen X and Yu S: Synthesis, biological evaluation and mechanism
studies of deoxytylophorinine and its derivatives as potential
anticancer agents. PLoS One. 7:e303422012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu P, Li C, Ren J, Ma S, Song X, Chen X
and Yu S: Stereospecific synthesis and biological evaluation of
monodesmethyl metabolites of (+)-13a-(S)-deoxytylophorinine as
potential antitumor agents. Synthesis. 44:3757–3764. 2012.
View Article : Google Scholar
|
10
|
Mon NN, Ito S, Senga T and Hamaguchi M:
FAK signaling in neoplastic disorders: a linkage between
inflammation and cancer. Ann NY Acad Sci. 1086:199–212. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Shibata K, Kikkawa F, Nawa A, Thant AA,
Naruse K, Mizutani S and Hamaguchi M: Both focal adhesion kinase
and c-Ras are required for the enhanced matrix metalloproteinase 9
secretion by fibronectin in ovarian cancer cells. Cancer Res.
58:900–903. 1998.PubMed/NCBI
|
12
|
Zeng ZZ, Jia Y, Hahn NJ, Markwart SM,
Rockwood KF and Livant DL: Role of focal adhesion kinase and
phosphatidylinositol 3′-kinase in integrin fibronectin receptor-
mediated, matrix metalloproteinase-1-dependent invasion by
metastatic prostate cancer cells. Cancer Res. 66:8091–8099. 2006.
View Article : Google Scholar : PubMed/NCBI
|
13
|
De Bernardi B, Nicolas B, Boni L, Indolfi
P, Carli M, Cordero Di Montezemolo L, Donfrancesco A, Pession A,
Provenzi M, Di Cataldo A, et al: Disseminated neuroblastoma in
children older than one year at diagnosis: comparable results with
three consecutive high-dose protocols adopted by the Italian
Co-Operative Group for Neuroblastoma. J Clin Oncol. 21:1592–1601.
2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pardridge WM: The blood-brain barrier:
bottleneck in brain drug development. NeuroRx. 2:3–14. 2005.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pardridge WM: Molecular Trojan horses for
blood-brain barrier drug delivery. Curr Opin Pharmacol. 6:494–500.
2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pardridge WM: Biopharmaceutical drug
targeting to the brain. J Drug Target. 18:157–167. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yount G, Taft RJ, Luu T, Rachlin K, Moore
D and Zhang W: Independent motile microplast formation correlates
with glioma cell invasiveness. J Neurooncol. 81:113–121. 2007.
View Article : Google Scholar
|
18
|
Canel M, Secades P, Garzón-Arango M,
Allonca E, Suarez C, Serrels A, Frame M, Brunton V and Chiara MD:
Involvement of focal adhesion kinase in cellular invasion of head
and neck squamous cell carcinomas via regulation of MMP-2
expression. Br J Cancer. 98:1274–1284. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sun T, Zhao N, Ni CS, Zhao XL, Zhang WZ,
Su X, Zhang DF, Gu Q and Sun BC: Doxycycline inhibits the adhesion
and migration of melanoma cells by inhibiting the expression and
phosphorylation of focal adhesion kinase (FAK). Cancer Lett.
285:141–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mon NN, Hasegawa H, Thant AA, Huang P,
Tanimura Y, Senga T and Hamaguchi M: A role for focal adhesion
kinase signaling in tumor necrosis factor-alpha-dependent matrix
metalloproteinase-9 production in a cholangiocarcinoma cell line,
CCKS1. Cancer Res. 66:6778–6784. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lai KC, Huang AC, Hsu SC, Kuo CL, Yang JS,
Wu SH and Chung JG: Benzyl isothiocyanate (BITC) inhibits migration
and invasion of human colon cancer HT29 cells by inhibiting matrix
metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC
and MAPK signaling pathway. J Agric Food Chem. 58:2935–2942. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Thant AA, Hiraiwa Y, Naito Y,
Sein TT, Sohara Y, Matsuda S and Hamaguchi M: A role for focal
adhesion kinase in hyluronan-dependent MMP-2 secretion in a human
small-cell lung carcinoma cell line, QG90. Biochem Biophys Res
Commun. 290:1123–1127. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chang YM, Shih YT, Chen YS, Liu CL, Fang
WK, Tsai CH, Tsai FJ, Kuo WW, Lai TY and Huang CY: Schwann cell
migration induced by earthworm extract via activation of PAs and
MMP-2/9 mediated through ERK1/2 and p38. Evid Based Complement
Alternat Med. 2011:3954582011. View Article : Google Scholar
|
24
|
Choi YA, Lim HK, Kim JR, Lee CH, Kim YJ,
Kang SS and Baek SH: Group IB secretory phospholipase A2 promotes
matrix metalloproteinase-2-mediated cell migration via the
phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem.
279:36579–36585. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Meng XN, Jin Y, Yu Y, Bai J, Liu GY, Zhu
J, Zhao YZ, Wang Z, Chen F, Lee KY, et al: Characterisation of
fibronectin-mediated FAK signalling pathways in lung cancer cell
migration and invasion. Br J Cancer. 101:327–334. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chan KC, Ho HH, Huang CN, Lin MC, Chen HM
and Wang CJ: Mulberry leaf extract inhibits vascular smooth muscle
cell migration involving a block of small GTPase and Akt/NF-kappaB
signals. J Agric Food Chem. 57:9147–9153. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Green DR and Kroemer G: The
Pathophysiology of mitochondrial cell death. Science. 305:626–629.
2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kuwana T and Newmeyer DD: Bcl-2-family
proteins and the role of mitochondria in apoptosis. Curr Opin Cell
Biol. 15:691–699. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ren D, Tu HC, Kim H, Wang GX, Bean GR,
Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ and Cheng EH: BID,
BIM, and PUMA are essential for activation of the BAX- and
BAK-dependent cell death program. Science. 330:1390–1393. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wei MC, Zong WX, Cheng EH, Lindsten T,
Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and
Korsmeyer SJ: Proapoptotic BAX and BAK: a requisite gateway to
mitochondrial dysfunction and death. Science. 292:727–730. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang E, Zha J, Jockel J, Boise LH,
Thompson CB and Korsmeyer SJ: Bad, a heterodimeric partner for
Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell.
80:285–291. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhivotovsky B, Samali A, Gahm A and
Orrenius S: Caspases their intracellular localization and
translocation during apoptosis. Cell Death Differ. 6:644–651. 1999.
View Article : Google Scholar : PubMed/NCBI
|