TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more (Review)
- Authors:
- Werner Hoffmann
-
Affiliations: Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany - Published online on: July 17, 2015 https://doi.org/10.3892/ijo.2015.3090
- Pages: 806-816
This article is mentioned in:
Abstract
Laine L, Takeuchi K and Tarnawski A: Gastric mucosal defense and cytoprotection: Bench to bedside. Gastroenterology. 135:41–60. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thornton DJ, Rousseau K and McGuckin MA: Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 70:459–486. 2008. View Article : Google Scholar | |
Senapati S, Sharma P, Bafna S, Roy HK and Batra SK: The MUC gene family: Their role in the diagnosis and prognosis of gastric cancer. Histol Histopathol. 23:1541–1552. 2008.PubMed/NCBI | |
Kjellev S: The trefoil factor family - small peptides with multiple functionalities. Cell Mol Life Sci. 66:1350–1369. 2009. View Article : Google Scholar | |
Hoffmann W: TFF peptides. Handbook of Biologically Active Peptides. 2nd edition. Kastin A: Elsevier; San Diego: pp. 1338–1345. 2013, View Article : Google Scholar | |
Thim L: Trefoil peptides: From structure to function. Cell Mol Life Sci. 53:888–903. 1997. View Article : Google Scholar | |
Wright NA, Hoffmann W, Otto WR, Rio MC and Thim L: Rolling in the clover: Trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett. 408:121–123. 1997. View Article : Google Scholar : PubMed/NCBI | |
Thim L: A new family of growth factor-like peptides. ‘Trefoil' disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic polypeptide (PSP), and frog skin peptides (spasmolysins). FEBS Lett. 250:85–90. 1989. View Article : Google Scholar : PubMed/NCBI | |
Gajhede M, Petersen TN, Henriksen A, Petersen JFW, Dauter Z, Wilson KS and Thim L: Pancreatic spasmolytic polypeptide: First three-dimensional structure of a member of the mammalian trefoil family of peptides. Structure. 1:253–262. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hanisch FG, Ragge H, Kalinski T, Meyer F, Kalbacher H and Hoffmann W: Human gastric TFF2 peptide contains an N-linked fucosylated N,N'-diacetyllactosediamine (LacdiNAc) oligosaccharide. Glycobiology. 23:2–11. 2013. View Article : Google Scholar | |
Petersen TN, Henriksen A and Gajhede M: Structure of porcine pancreatic spasmolytic polypeptide at 1.95 A resolution. Acta Crystallogr D Biol Crystallogr. 52:730–737. 1996. View Article : Google Scholar : PubMed/NCBI | |
Stürmer R, Müller S, Hanisch FG and Hoffmann W: Porcine gastric TFF2 is a mucus constituent and differs from pancreatic TFF2. Cell Physiol Biochem. 33:895–904. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tomasetto C, Rio MC, Gautier C, Wolf C, Hareuveni M, Chambon P and Lathe R: hSP, the domain-duplicated homolog of pS2 protein, is co-expressed with pS2 in stomach but not in breast carcinoma. EMBO J. 9:407–414. 1990.PubMed/NCBI | |
Rasmussen TN, Raaberg L, Poulsen SS, Thim L and Holst JJ: Immunohistochemical localization of pancreatic spasmolytic polypeptide (PSP) in the pig. Histochemistry. 98:113–119. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hanby AM, Poulsom R, Singh S, Elia G, Jeffery RE and Wright NA: Spasmolytic polypeptide is a major antral peptide: Distribution of the trefoil peptides human spasmolytic polypeptide and pS2 in the stomach. Gastroenterology. 105:1110–1116. 1993.PubMed/NCBI | |
Hanby AM, Poulsom R, Elia G, Singh S, Longcroft JM and Wright NA: The expression of the trefoil peptides pS2 and human spasmolytic polypeptide (hSP) in ‘gastric metaplasia' of the proximal duodenum: Implications for the nature of ‘gastric metaplasia'. J Pathol. 169:355–360. 1993. View Article : Google Scholar : PubMed/NCBI | |
Poulsom R: Trefoil peptides. Baillieres Clin Gastroenterol. 10:113–134. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ota H, Hayama M, Momose M, El-Zimaity HMT, Matsuda K, Sano K, Maruta F, Okumura N and Katsuyama T: Co-localization of TFF2 with gland mucous cell mucin in gastric mucous cells and in extracellular mucous gel adherent to normal and damaged gastric mucosa. Histochem Cell Biol. 126:617–625. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kouznetsova I, Kalinski T, Meyer F and Hoffmann W: Self-renewal of the human gastric epithelium: New insights from expression profiling using laser microdissection. Mol Biosyst. 7:1105–1112. 2011. View Article : Google Scholar : PubMed/NCBI | |
Quante M, Marrache F, Goldenring JR and Wang TC: TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology. 139:2018–2027.e2012. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jeffrey GP, Oates PS, Wang TC, Babyatsky MW and Brand SJ: Spasmolytic polypeptide: A trefoil peptide secreted by rat gastric mucous cells. Gastroenterology. 106:336–345. 1994.PubMed/NCBI | |
Semple JI, Newton JL, Westley BR and May FE: Dramatic diurnal variation in the concentration of the human trefoil peptide TFF2 in gastric juice. Gut. 48:648–655. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kouznetsova I, Gerlach KL, Zahl C and Hoffmann W: Expression analysis of human salivary glands by laser microdissection: Differences between submandibular and labial glands. Cell Physiol Biochem. 26:375–382. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cook GA, Familari M, Thim L and Giraud AS: The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response. FEBS Lett. 456:155–159. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kurt-Jones EA, Cao L, Sandor F, Rogers AB, Whary MT, Nambiar PR, Cerny A, Bowen G, Yan J, Takaishi S, et al: Trefoil family factor 2 is expressed in murine gastric and immune cells and controls both gastrointestinal inflammation and systemic immune responses. Infect Immun. 75:471–480. 2007. View Article : Google Scholar : | |
Hinz M, Schwegler H, Chwieralski CE, Laube G, Linke R, Pohle W and Hoffmann W: Trefoil factor family (TFF) expression in the mouse brain and pituitary: Changes in the developing cerebellum. Peptides. 25:827–832. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wong WM, Playford RJ and Wright NA: Peptide gene expression in gastrointestinal mucosal ulceration: Ordered sequence or redundancy? Gut. 46:286–292. 2000. View Article : Google Scholar : PubMed/NCBI | |
Poulsom R and Wright NA: Trefoil peptides: A newly recognized family of epithelial mucin-associated molecules. Am J Physiol. 265:G205–G213. 1993.PubMed/NCBI | |
Wright NA: Aspects of the biology of regeneration and repair in the human gastrointestinal tract. Philos Trans R Soc Lond B Biol Sci. 353:925–933. 1998. View Article : Google Scholar : PubMed/NCBI | |
Longman RJ, Thomas MG and Poulsom R: Trefoil peptides and surgical disease. Br J Surg. 86:740–748. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann W and Jagla W: Cell type specific expression of secretory TFF peptides: Colocalization with mucins and synthesis in the brain. Int Rev Cytol. 213:147–181. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulsom R, Wright NA and Goldenring JR: Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest. 79:639–646. 1999.PubMed/NCBI | |
Nam KT, Lee HJ, Sousa JF, Weis VG, O'Neal RL, Finke PE, Romero-Gallo J, Shi G, Mills JC, Peek RM Jr, et al: Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology. 139:2028–2037.e9. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goldenring JR, Nam KT, Wang TC, Mills JC and Wright NA: Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 138:2207–2210. 2210.e22012010. View Article : Google Scholar : PubMed/NCBI | |
Playford RJ: Peptides and gastrointestinal mucosal integrity. Gut. 37:595–597. 1995. View Article : Google Scholar : PubMed/NCBI | |
Poulsen SS, Kissow H, Hare K, Hartmann B and Thim L: Luminal and parenteral TFF2 and TFF3 dimer and monomer in two models of experimental colitis in the rat. Regul Pept. 126:163–171. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P and Steidler L: Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology. 127:502–513. 2004. View Article : Google Scholar : PubMed/NCBI | |
Graness A, Chwieralski CE, Reinhold D, Thim L and Hoffmann W: Protein kinase C and ERK activation are required for TFF-peptide-stimulated bronchial epithelial cell migration and tumor necrosis factor-α-induced interleukin-6 (IL-6) and IL-8 secretion. J Biol Chem. 277:18440–18446. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chwieralski CE, Schnurra I, Thim L and Hoffmann W: Epidermal growth factor and trefoil factor family 2 synergistically trigger chemotaxis on BEAS-2B cells via different signaling cascades. Am J Respir Cell Mol Biol. 31:528–537. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dubeykovskaya Z, Dubeykovskiy A, Solal-Cohen J and Wang TC: Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J Biol Chem. 284:3650–3662. 2009. View Article : Google Scholar : | |
Hoffmann W: Trefoil factor family (TFF) peptides and chemokine receptors: A promising relationship. J Med Chem. 52:6505–6510. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thim L and Mørtz E: Isolation and characterization of putative trefoil peptide receptors. Regul Pept. 90:61–68. 2000. View Article : Google Scholar : PubMed/NCBI | |
Poulsen SS, Thulesen J, Nexø E and Thim L: Distribution and metabolism of intravenously administered trefoil factor 2/porcine spasmolytic polypeptide in the rat. Gut. 43:240–247. 1998. View Article : Google Scholar | |
Fox JG, Rogers AB, Whary MT, Ge Z, Ohtani M, Jones EK and Wang TC: Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2−/− C57BL6 × Sv129 Helicobacter pylori-infected mice. Am J Pathol. 171:1520–1528. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xue L, Aihara E, Podolsky DK, Wang TC and Montrose MH: In vivo action of trefoil factor 2 (TFF2) to speed gastric repair is independent of cyclooxygenase. Gut. 59:1184–1191. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baus-Loncar M, Schmid J, Lalani N, Rosewell I, Goodlad RA, Stamp GWH, Blin N and Kayademir T: Trefoil factor 2 (TFF2) deficiency in murine digestive tract influences the immune system. Cell Physiol Biochem. 16:31–42. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shah AA, Mihalj M, Ratkay I, Lubka-Pathak M, Balogh P, Klingel K, Bohn E, Blin N and Baus-Loncar M: Increased susceptibility to Yersinia enterocolitica infection of Tff2 deficient mice. Cell Physiol Biochem. 30:853–862. 2012. View Article : Google Scholar : PubMed/NCBI | |
McBerry C, Egan CE, Rani R, Yang Y, Wu D, Boespflug N, Boon L, Butcher B, Mirpuri J, Hogan SP, et al: Trefoil factor 2 negatively regulates type 1 immunity against Toxoplasma gondii. J Immunol. 189:3078–3084. 2012. View Article : Google Scholar : PubMed/NCBI | |
Allen A: Gastrointestinal mucus. Section 6: The gastrointestinal system. Handbook of physiology. III. Schultz SG: Am Physiol Soc; Bethesda, MD: pp. 359–382. 1989 | |
Allen A and Flemström G: Gastroduodenal mucus bicarbonate barrier: Protection against acid and pepsin. Am J Physiol Cell Physiol. 288:C1–C19. 2005. View Article : Google Scholar | |
De Bolós C, Garrido M and Real FX: MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology. 109:723–734. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nordman H, Davies JR, Lindell G, de Bolós C, Real F and Carlstedt I: Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem J. 364:191–200. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann W: Self-renewal of the gastric epithelium from stem and progenitor cells. Front Biosci (Schol Ed). 5:720–731. 2013. View Article : Google Scholar | |
Sawaguchi A, Ishihara K, Kawano Ji J, Oinuma T, Hotta K and Suganuma T: Fluid dynamics of the excretory flow of zymogenic and mucin contents in rat gastric gland processed by high-pressure freezing/freeze substitution. J Histochem Cytochem. 50:223–234. 2002. View Article : Google Scholar : PubMed/NCBI | |
Byrd JC, Yan P, Sternberg L, Yunker CK, Scheiman JM and Bresalier RS: Aberrant expression of gland-type gastric mucin in the surface epithelium of Helicobacter pylori-infected patients. Gastroenterology. 113:455–464. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ishihara K, Kurihara M, Goso Y, Urata T, Ota H, Katsuyama T and Hotta K: Peripheral α-linked N-acetylglucosamine on the carbohydrate moiety of mucin derived from mammalian gastric gland mucous cells: Epitope recognized by a newly characterized monoclonal antibody. Biochem J. 318:409–416. 1996. View Article : Google Scholar | |
Nakayama J, Yeh JC, Misra AK, Ito S, Katsuyama T and Fukuda M: Expression cloning of a human α1, 4-N-acetylglucosaminyl-transferase that forms GlcNAα1→4Galβ→R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci USA. 96:8991–8996. 1999. View Article : Google Scholar | |
Karasawa F, Shiota A, Goso Y, Kobayashi M, Sato Y, Masumoto J, Fujiwara M, Yokosawa S, Muraki T, Miyagawa S, et al: Essential role of gastric gland mucin in preventing gastric cancer in mice. J Clin Invest. 122:923–934. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang DH, Tsuyama S, Hotta K, Katsuyama T and Murata F: Expression of N-acetylglucosamine residues in developing rat fundic gland cells. Histochem J. 32:187–193. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nakayama J, Katsuyama T and Fukuda M: Recent progress in paradoxical concanavalin A staining. Acta Histochem Cytochem. 33:153–157. 2000. View Article : Google Scholar | |
Skoog EC, Sjöling Å, Navabi N, Holgersson J, Lundin SB and Lindén SK: Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells. PLoS One. 7:e363782012. View Article : Google Scholar : PubMed/NCBI | |
Shimizu T, Akamatsu T, Sugiyama A, Ota H and Katsuyama T: Helicobacter pylori and the surface mucous gel layer of the human stomach. Helicobacter. 1:207–218. 1996. View Article : Google Scholar : PubMed/NCBI | |
Van den Brink GR, Tytgat KM, Van der Hulst RW, Van der Loos CM, Einerhand AWC, Büller HA and Dekker J: H. pylori colocalises with MUC5AC in the human stomach. Gut. 46:601–607. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hidaka E, Ota H, Hidaka H, Hayama M, Matsuzawa K, Akamatsu T, Nakayama J and Katsuyama T: Helicobacter pylori and two ultrastructurally distinct layers of gastric mucous cell mucins in the surface mucous gel layer. Gut. 49:474–480. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kawakubo M, Ito Y, Okimura Y, Kobayashi M, Sakura K, Kasama S, Fukuda MN, Fukuda M, Katsuyama T and Nakayama J: Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science. 305:1003–1006. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jonckheere N and Van Seuningen I: The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie. 92:1–11. 2010. View Article : Google Scholar | |
McGuckin MA, Lindén SK, Sutton P and Florin TH: Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 9:265–278. 2011. View Article : Google Scholar : PubMed/NCBI | |
Phillipson M, Johansson ME, Henriksnäs J, Petersson J, Gendler SJ, Sandler S, Persson AEG, Hansson GC and Holm L: The gastric mucus layers: Constituents and regulation of accumulation. Am J Physiol Gastrointest Liver Physiol. 295:G806–G812. 2008. View Article : Google Scholar : PubMed/NCBI | |
Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR and McGuckin MA: Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 276:18327–18336. 2001. View Article : Google Scholar : PubMed/NCBI | |
Menheniott TR, Kurklu B and Giraud AS: Gastrokines: Stomach-specific proteins with putative homeostatic and tumor suppressor roles. Am J Physiol Gastrointest Liver Physiol. 304:G109–G121. 2013. View Article : Google Scholar | |
Kang W, Nielsen O, Fenger C, Madsen J, Hansen S, Tornoe I, Eggleton P, Reid KBM and Holmskov U: The scavenger receptor, cysteine-rich domain-containing molecule gp-340 is differentially regulated in epithelial cell lines by phorbol ester. Clin Exp Immunol. 130:449–458. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nio-Kobayashi J, Takahashi-Iwanaga H and Iwanaga T: Immuno-histochemical localization of six galectin subtypes in the mouse digestive tract. J Histochem Cytochem. 57:41–50. 2009. View Article : Google Scholar : | |
O'Neil DA, Cole SP, Martin-Porter E, Housley MP, Liu L, Ganz T and Kagnoff MF: Regulation of human β-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infect Immun. 68:5412–5415. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L and Kagnoff MF: Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology. 125:1613–1625. 2003. View Article : Google Scholar | |
Aloulou A and Carrière F: Gastric lipase: An extremophilic interfacial enzyme with medical applications. Cell Mol Life Sci. 65:851–854. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mauch F, Bode G, Ditschuneit H and Malfertheiner P: Demonstration of a phospholipid-rich zone in the human gastric epithelium damaged by Helicobacter pylori. Gastroenterology. 105:1698–1704. 1993.PubMed/NCBI | |
Lichtenberger LM: The hydrophobic barrier properties of gastrointestinal mucus. Annu Rev Physiol. 57:565–583. 1995. View Article : Google Scholar : PubMed/NCBI | |
Taylor C, Allen A, Dettmar PW and Pearson JP: The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules. 4:922–927. 2003. View Article : Google Scholar : PubMed/NCBI | |
Atuma C, Strugala V, Allen A and Holm L: The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 280:G922–G929. 2001.PubMed/NCBI | |
Ermund A, Schütte A, Johansson ME, Gustafsson JK and Hansson GC: Studies of mucus in mouse stomach, small intestine, and colon. I Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am J Physiol Gastrointest Liver Physiol. 305:G341–G347. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ota H and Katsuyama T: Alternating laminated array of two types of mucin in the human gastric surface mucous layer. Histochem J. 24:86–92. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ho SB, Takamura K, Anway R, Shekels LL, Toribara NW and Ota H: The adherent gastric mucous layer is composed of alternating layers of MUC5AC and MUC6 mucin proteins. Dig Dis Sci. 49:1598–1606. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hanisch FG, Chai W, Rosankiewicz JR, Lawson AM, Stoll MS and Feizi T: Core-typing of O-linked glycans from human gastric mucins. Lack of evidence for the occurrence of the core sequence Gal1-6GalNAc. Eur J Biochem. 217:645–655. 1993. View Article : Google Scholar : PubMed/NCBI | |
Phillipson M, Atuma C, Henriksnäs J and Holm L: The importance of mucus layers and bicarbonate transport in preservation of gastric juxtamucosal pH. Am J Physiol Gastrointest Liver Physiol. 282:G211–G219. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schreiber S and Scheid P: Gastric mucus of the guinea pig: Proton carrier and diffusion barrier. Am J Physiol. 272:G63–G70. 1997.PubMed/NCBI | |
Johansson M, Synnerstad I and Holm L: Acid transport through channels in the mucous layer of rat stomach. Gastroenterology. 119:1297–1304. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kouznetsova I, Laubinger W, Kalbacher H, Kalinski T, Meyer F, Roessner A and Hoffmann W: Biosynthesis of gastrokine-2 in the human gastric mucosa: Restricted spatial expression along the antral gland axis and differential interaction with TFF1, TFF2 and mucins. Cell Physiol Biochem. 20:899–908. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hanisch FG, Bonar D, Schloerer N and Schroten H: Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. J Biol Chem. 289:27363–27375. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rossez Y, Maes E, Lefebvre Darroman T, Gosset P, Ecobichon C, Joncquel Chevalier Curt M, Boneca IG, Michalski J-C and Robbe-Masselot C: Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori. Glycobiology. 22:1193–1206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Van Halbeek H, Gerwig GJ, Vliegenthart JF, Smits HL, Van Kerkhof PJ and Kramer MF: Terminal α(1→4)-linked N-acetylglucosamine: A characteristic constituent of duodenal-gland mucous glycoproteins in rat and pig. A high-resolution 1H-NMR study. Biochim Biophys Acta. 747:107–116. 1983. View Article : Google Scholar : PubMed/NCBI | |
Gabius HJ: Ca2+: mastermind and active player for lectin activity (including a gallery of lectin folds). The Sugar Code: Fundamentals of Glycosciences. Gabius HJ: Wiley-VCH; Weinheim: pp. 269–278. 2009 | |
Westley BR, Griffin SM and May FE: Interaction between TFF1, a gastric tumor suppressor trefoil protein, and TFIZ1, a brichos domain-containing protein with homology to SP-C. Biochemistry. 44:7967–7975. 2005. View Article : Google Scholar : PubMed/NCBI | |
Albert TK, Laubinger W, Müller S, Hanisch F-G, Kalinski T, Meyer F and Hoffmann W: Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res. 9:3108–3117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Otto WR, Rao J, Cox HM, Kotzian E, Lee CY, Goodlad RA, Lane A, Gorman M, Freemont PA, Hansen HF, et al: Effects of pancreatic spasmolytic polypeptide (PSP) on epithelial cell function. Eur J Biochem. 235:64–72. 1996. View Article : Google Scholar : PubMed/NCBI | |
Rousseau K, Byrne C, Kim YS, Gum JR, Swallow DM and Toribara NW: The complete genomic organization of the human MUC6 and MUC2 mucin genes. Genomics. 83:936–939. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bäckström M, Ambort D, Thomsson E, Johansson ME and Hansson GC: Increased understanding of the biochemistry and biosynthesis of MUC2 and other gel-forming mucins through the recombinant expression of their protein domains. Mol Biotechnol. 54:250–256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Joba W and Hoffmann W: Similarities of integumentary mucin B.1 from Xenopus laevis and prepro-von Willebrand factor at their amino-terminal regions. J Biol Chem. 272:1805–1810. 1997. View Article : Google Scholar : PubMed/NCBI | |
Leir SH and Harris A: MUC6 mucin expression inhibits tumor cell invasion. Exp Cell Res. 317:2408–2419. 2011. View Article : Google Scholar : PubMed/NCBI | |
Purvis AR, Gross J, Dang LT, Huang R-H, Kapadia M, Townsend RR and Sadler JE: Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi. Proc Natl Acad Sci USA. 104:15647–15652. 2007. View Article : Google Scholar : PubMed/NCBI | |
Springer TA: von Willebrand factor, Jedi knight of the bloodstream. Blood. 124:1412–1425. 2014. View Article : Google Scholar : PubMed/NCBI | |
Purvis AR and Sadler JE: A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerization. J Biol Chem. 279:49982–49988. 2004. View Article : Google Scholar : PubMed/NCBI | |
Godl K, Johansson ME, Lidell ME, Mörgelin M, Karlsson H, Olson FJ, Gum JR Jr, Kim YS and Hansson GC: The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem. 277:47248–47256. 2002. View Article : Google Scholar : PubMed/NCBI | |
Perez-Vilar J and Hill RL: Identification of the half-cystine residues in porcine submaxillary mucin critical for multimerization through the D-domains. Roles of the CGLCG motif in the D1- and D3-domains. J Biol Chem. 273:34527–34534. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann W, Jagla W and Wiede A: Molecular medicine of TFF-peptides: From gut to brain. Histol Histopathol. 16:319–334. 2001.PubMed/NCBI | |
Toribara NW, Ho SB, Gum E, Gum JR Jr, Lau P and Kim YS: The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis of the primary amino acid sequence. J Biol Chem. 272:16398–16403. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhou YF and Springer TA: Highly reinforced structure of a C-terminal dimerization domain in von Willebrand factor. Blood. 123:1785–1793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Perez-Vilar J and Hill RL: The carboxyl-terminal 90 residues of porcine submaxillary mucin are sufficient for forming disulfide-bonded dimers. J Biol Chem. 273:6982–6988. 1998. View Article : Google Scholar : PubMed/NCBI | |
Perez-Vilar J and Mabolo R: Gel-forming mucins. Notions from in vitro studies. Histol Histopathol. 22:455–464. 2007.PubMed/NCBI | |
Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N and Erle DJ: The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci USA. 106:6950–6955. 2009. View Article : Google Scholar : PubMed/NCBI | |
Adler KB, Tuvim MJ and Dickey BF: Regulated mucin secretion from airway epithelial cells. Front Endocrinol. 4:article 129. 2013. View Article : Google Scholar | |
Kaser A, Adolph TE and Blumberg RS: The unfolded protein response and gastrointestinal disease. Semin Immunopathol. 35:307–319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Wodziak D, Tun M, Bouley DM and Lowe AW: Loss of anterior gradient 2 (Agr2) expression results in hyperplasia and defective lineage maturation in the murine stomach. J Biol Chem. 288:4321–4333. 2013. View Article : Google Scholar : | |
Mayadas TN and Wagner DD: Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly. Proc Natl Acad Sci USA. 89:3531–3535. 1992. View Article : Google Scholar : PubMed/NCBI | |
Huang RH, Wang Y, Roth R, Yu X, Purvis AR, Heuser JE, Egelman EH and Sadler JE: Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. Proc Natl Acad Sci USA. 105:482–487. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ambort D, Johansson ME, Gustafsson JK, Nilsson HE, Ermund A, Johansson BR, Koeck PJB, Hebert H and Hansson GC: Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc Natl Acad Sci USA. 109:5645–5650. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perez-Vilar J, Eckhardt AE, DeLuca A and Hill RL: Porcine submaxillary mucin forms disulfide-linked multimers through its amino-terminal D-domains. J Biol Chem. 273:14442–14449. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dang LT, Purvis AR, Huang RH, Westfield LA and Sadler JE: Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerization of von Willebrand factor. J Biol Chem. 286:25763–25769. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chin WC, Quesada I, Nguyen T and Verdugo P: Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis. Novartis Found Symp. 248:132–141; discussion 141–149, 277–282. 2002. View Article : Google Scholar | |
Dickson EJ, Duman JG, Moody MW, Chen L and Hille B: Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe. Proc Natl Acad Sci USA. 109:E3539–E3548. 2012. View Article : Google Scholar | |
Borges R, Domínguez N, Estévez-Herrera J, Pereda D and Machado JD: Vesicular Ca2+ mediates granule motion and exocytosis. Cell Calcium. 51:338–341. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perez-Vilar J, Olsen JC, Chua M and Boucher RC: pH-dependent intraluminal organization of mucin granules in live human mucous/goblet cells. J Biol Chem. 280:16868–16881. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perez-Vilar J: Mucin granule intraluminal organization. Am J Respir Cell Mol Biol. 36:183–190. 2007. View Article : Google Scholar | |
Verdugo P: Mucin exocytosis. Am Rev Respir Dis. 144:S33–S37. 1991. View Article : Google Scholar : PubMed/NCBI | |
Verdugo P: Supramolecular dynamics of mucus. Cold Spring Harb Perspect Med. 2:22012. View Article : Google Scholar | |
Chen EY, Yang N, Quinton PM and Chin W-C: A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol. 299:L542–L549. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thim L, Madsen F and Poulsen SS: Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest. 32:519–527. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bansil R, Celli JP, Hardcastle JM and Turner BS: The influence of mucus microstructure and rheology in Helicobacter pylori infection. Front Immunol. 4:3102013. View Article : Google Scholar : PubMed/NCBI | |
Kjellev S, Nexø E, Thim L and Poulsen SS: Systemically administered trefoil factors are secreted into the gastric lumen and increase the viscosity of gastric contents. Br J Pharmacol. 149:92–99. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Podolsky DK, Engel E, Guth PH and Kaunitz JD: Human spasmolytic polypeptide decreases proton permeation through gastric mucus in vivo and in vitro. Am J Physiol. 272:G1473–G1480. 1997.PubMed/NCBI | |
Jagla W, Wiede A, Kölle S and Hoffmann W: Differential expression of the TFF-peptides xP1 and xP4 in the gastrointestinal tract of Xenopus laevis. Cell Tissue Res. 291:13–18. 1998. View Article : Google Scholar : PubMed/NCBI | |
Botzler C, Oertel M, Hinz M and Hoffmann W: Structure of the Xenopus laevis TFF-gene xP4.1, differentially expressed to its duplicated homolog xP4.2. Biochim Biophys Acta. 1489:345–353. 1999. View Article : Google Scholar | |
Crouzier T, Beckwitt CH and Ribbeck K: Mucin multilayers assembled through sugar-lectin interactions. Biomacromolecules. 13:3401–3408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peterson AJ, Menheniott TR, O'Connor L, Walduck AK, Fox JG, Kawakami K, Minamoto T, Ong EK, Wang TC, Judd LM, et al: Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology. 139:2005–2017. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang I, Nell S and Suerbaum S: Survival in hostile territory: The microbiota of the stomach. FEMS Microbiol Rev. 37:736–761. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paulsen FP, Schaudig U, Fabian A, Ehrich D and Sel S: TFF peptides and mucins are major components of dacryoliths. Graefes Arch Clin Exp Ophthalmol. 244:1160–1170. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rinnert M, Hinz M, Buhtz P, Reiher F, Lessel W and Hoffmann W: Synthesis and localization of trefoil factor family (TFF) peptides in the human urinary tract and TFF2 excretion into the urine. Cell Tissue Res. 339:639–647. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reeves EP, Ali T, Leonard P, Hearty S, O'Kennedy R, May FEB, Westley BR, Josenhans C, Rust M, Suerbaum S, et al: Helicobacter pylori lipopolysaccharide interacts with TFF1 in a pH-dependent manner. Gastroenterology. 135:2043–2054. 2054.e2041–2042. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann W and Hauser F: Biosynthesis of frog skin mucins: Cysteine-rich shuffled modules, polydispersities and genetic polymorphism. Comp Biochem Physiol B. 105:465–472. 1993.PubMed/NCBI | |
De Giorgio MR, Yoshioka M, Riedl I, Moreault O, Cherizol R-G, Shah AA, Blin N, Richard D and St-Amand J: Trefoil factor family member 2 (Tff2) KO mice are protected from high-fat diet-induced obesity. Obesity. 21:1389–1395. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sacchettini JC, Baum LG and Brewer CF: Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry. 40:3009–3015. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich GA, Toscano MA, Jackson SS and Vasta GR: Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol. 17:513–520. 2007. View Article : Google Scholar : PubMed/NCBI |