The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review)
- Authors:
- Joseph G. Sinkovics
-
Affiliations: St. Joseph Hospital's Cancer Institute Affiliated with the H.L. Moffitt Comprehensive Cancer Center; Department of Molecular Medicine, The University of South Florida Morsani College of Medicine, Tampa, FL, USA - Published online on: July 23, 2015 https://doi.org/10.3892/ijo.2015.3102
- Pages: 1211-1229
-
Copyright: © Sinkovics . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sullivan JC and Finnerty JR: A surprising abundance of human disease genes in a simple ‘basal’ animal, the starlet sea anemone (Nematostella vectensis). Genome. 50:689–692. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JC, Reitzel AM and Finnerty JR: A high percentage of introns in human genes were present early in animal evolution: Evidence from the basal metazoan Nematostella vectensis. Genome Inform. 17:219–229. 2006. | |
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 317:86–94. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reitzel AM, Sullivan JC, Traylor-Knowles N and Finnerty JR: Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. Biol Bull. 214:233–254. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goldstone JV: Environmental sensing and response genes in cnidaria: The chemical defensome in the sea anemone Nematostella vectensis. Cell Biol Toxicol. 24:483–502. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nelson DR, Goldstone JV and Stegeman JJ: The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos Trans R Soc Lond B Biol Sci. 368:201204742013. View Article : Google Scholar : PubMed/NCBI | |
Sinkovics JG: RNA/DNA & Cancer. Springer Verlag; 2015, (In print). | |
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, et al: The Chlorella variabilis NC64A genome reveals adaptation to photo-symbiosis, coevolution with viruses, and cryptic sex. Plant Cell. 22:2943–2955. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C, Edwards RA, Haynes M, Angly FE, Wegley L, et al: Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc Natl Acad Sci USA. 105:18413–18418. 2008. View Article : Google Scholar : PubMed/NCBI | |
Davy SK, Allemand D and Weis VM: Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev. 76:229–261. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grasis JA, Lachnit T, Anton-Erxleben F, Lim YW, Schmieder R, Fraune S, Franzenburg S, Insua S, Machado G, Haynes M, et al: Species-specific viromes in the ancestral holobiont Hydra. PLoS One. 9:e1099522014. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD and Finnerty JR: Two alleles of NF-kappaB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS One. 4:e73112009. View Article : Google Scholar : PubMed/NCBI | |
Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR and Gilmore TD: Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol. 31:1076–1087. 2011. View Article : Google Scholar : | |
Armanious H, Gelebart P, Anand M, Belch A and Lai R: Constitutive activation of metalloproteinase ADAM10 in mantle cell lymphoma promotes cell growth and activates the TNFα/NF-κB pathway. Blood. 117:6237–6246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Martin AG and Fresno M: Tumor necrosis factor-alpha activation of NF-kappa B requires the phosphorylation of Ser-471 in the transactivation domain of c-Rel. J Biol Chem. 275:24383–24391. 2000. View Article : Google Scholar : PubMed/NCBI | |
Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C and Levrero M: Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem. 272:26079–26082. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Challa-Malladi M, Bratton SB and Wright CW: Nuclear factor-κB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem. 289:30680–30689. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schaaf MJM, Willetts L, Hayes BP, Maschera B, Stylianou E and Farrow SN: The relationship between intranuclear mobility of the NF-kappaB subunit p65 and its DNA binding affinity. J Biol Chem. 281:22409–22420. 2006. View Article : Google Scholar : PubMed/NCBI | |
Adam E, Quivy V, Bex F, Chariot A, Collette Y, Vanhulle C, Schoonbroodt S, Goffin V, Nguyên TL-A, Gloire G, et al: Potentiation of tumor necrosis factor-induced NF-κB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of IκBα. Mol Cell Biol. 23:6200–6209. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liongue C and Ward AC: Evolution of the JAK-STAT pathway. JAKSTAT. 2:e227562013.PubMed/NCBI | |
Horvath CM: STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci. 25:496–502. 2000. View Article : Google Scholar : PubMed/NCBI | |
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A and Levine AJ: The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2:a0011082010. View Article : Google Scholar | |
Pankow S and Bamberger C: The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One. 2:e7822007. View Article : Google Scholar : PubMed/NCBI | |
Momand J, Villegas A and Belyi VA: The evolution of MDM2 family genes. Gene. 486:23–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ and Verma C: Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle. 9:540–547. 2010. View Article : Google Scholar : PubMed/NCBI | |
Biswas G, Anandatheerthavarada HK, Zaidi M and Avadhani NG: Mitochondria to nucleus stress signaling: A distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J Cell Biol. 161:507–519. 2003. View Article : Google Scholar : PubMed/NCBI | |
Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C and Avadhani NG: Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 20:1910–1920. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, Dörken B, Zenke M, Stein H and Scheidereit C: Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med. 196:605–617. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nagy ZS, Rui H, Stepkowski SM, Karras J and Kirken RA: A preferential role for STAT5, not constitutively active STAT3, in promoting survival of a human lymphoid tumor. J Immunol. 177:5032–5040. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L and Ford RJ: Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood. 107:4540–4548. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pham LV, Fu L, Tamayo AT, Bueso-Ramos C, Drakos E, Vega F, Medeiros LJ and Ford RJ: Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood. 117:200–210. 2011. View Article : Google Scholar : | |
Gebauer N, Hardel TT, Gebauer J, Bernard V, Merz H, Feller AC, Rades D, Biersack H, Lehnert H and Thorns C: Activating mutations affecting the NF-kappa B pathway and EZH2-mediated epigenetic regulation are rare events in primary mediastinal large B-cell lymphoma. Anticancer Res. 34:5503–5507. 2014.PubMed/NCBI | |
Odqvist L, Montes-Moreno S, Sánchez-Pacheco RE, Young KH, Martín-Sánchez E, Cereceda L, Sánchez-Verde L, Pajares R, Mollejo M, Fresno MF, et al: NF-κB expression is a feature of both activated B-cell-like and germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. Mod Pathol. 27:1331–1337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Demchenko YN and Kuehl WM: A critical role for the NF-κB pathway in multiple myeloma. Oncotarget. 1:59–68. 2010. View Article : Google Scholar : PubMed/NCBI | |
Litvinov IV, Cordeiro B, Fredholm S, Ødum N, Zargham H, Huang Y, Zhou Y, Pehr K, Kupper TS, Woetmann A, et al: Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. Cell Cycle. 13:2975–2982. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gelfanov VG, Burgess GS, Litz-Jackson S, King AJ, Marshall MS, Nakasatri H and Boswell HS: Transformation of interleukin-3-dependent cells without participation of Stat5/bcl-xL: Cooperation leads to p65 nuclear factor κB-mediated apoptosis involving c-IAP2. Blood. 98:2508–2517. 2001. View Article : Google Scholar : PubMed/NCBI | |
Feuerhake F, Kutok JL, Monti S, Chen W, LaCasce AS, Cattoretti G, Kurtin P, Pinkus GS, de Leval L, Harris NL, et al: NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 106:1392–1399. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pont-Kingdon GA, Beagley CT, Okimoto R and Wolstenholme DR: Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): Prokaryote-like genes for tRNA(f-Met) and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons. J Mol Evol. 39:387–399. 1994. View Article : Google Scholar : PubMed/NCBI | |
Beagley CT, Okimoto R and Wolstenholme DR: The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): Introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics. 148:1091–1108. 1998.PubMed/NCBI | |
Kretz-Remy C, Munsch B and Arrigo AP: NFkappa B-dependent transcriptional activation during heat shock recovery. Thermolability of the NF-kappaB complex. J Biol Chem. 276:43723–43733. 2001. View Article : Google Scholar : PubMed/NCBI | |
Starczynowski DT, Trautmann H, Pott C, Harder L, Arnold N, Africa JA, Leeman JR, Siebert R and Gilmore TD: Mutation of an IKK phosphorylation site within the transactivation domain of REL in two patients with B-cell lymphoma enhances REL's in vitro transforming activity. Oncogene. 26:2685–2694. 2007. View Article : Google Scholar | |
Thompson RC, Vardinogiannis I and Gilmore TD: Identification of an NF-κB p50/p65-responsive site in the human MIR155HG promoter. BMC Mol Biol. 14:242013. View Article : Google Scholar | |
Lind EF, Elford AR and Ohashi PS: Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. J Immunol. 190:1210–1216. 2013. View Article : Google Scholar : PubMed/NCBI | |
Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D and Duvic M: Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 13:3331–3335. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marosvári D, Téglási V, Csala I, Marschalkó M, Bödör C, Timár B, Csomor J, Hársing J and Reiniger L: Altered microRNA expression in folliculotropic and transformed mycosis fungoides. Pathol Oncol Res. 21:821–825. 2015. View Article : Google Scholar : PubMed/NCBI | |
Silva LM, Hirai KE, de Souza JR, Fuzii HT, Dias LB Jr, Carneiro FR, de Souza Aarão TL and Quaresma JA: Immunohistochemical analysis of the expression of cellular transcription NFκB (p65). AP-1c-Fos and c-Jun and JAK/STAT in leprosy. Human Pathol. 46:746–752. 2015. View Article : Google Scholar | |
Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR and Fox PL: Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol. 28:437–447. 2011. View Article : Google Scholar | |
Sinkovics JG, Howe CD and Shullenberger CC: Cellular activities in tissue culture of leukemic human bone marrow. Blood. 24:389–401. 1964.PubMed/NCBI | |
Baus D, Nonnenmacher F, Jankowski S, Döring C, Bräutigam C, Frank M, Hansmann ML and Pfitzner E: STAT6 and STAT1 are essential antagonistic regulators of cell survival in classical Hodgkin lymphoma cell line. Leukemia. 23:1885–1893. 2009. View Article : Google Scholar : PubMed/NCBI | |
Canoz O, Rassidakis GZ, Admirand JH and Medeiros LJ: Immunohistochemical detection of BCL-3 in lymphoid neoplasms: A survey of 353 cases. Mod Pathol. 17:911–917. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cahir McFarland ED, Izumi KM and Mosialos G: Epstein-Barr virus transformation: Involvement of latent membrane protein 1-mediated activation of NF-kappaB. Oncogene. 18:6959–6964. 1999. View Article : Google Scholar : PubMed/NCBI | |
Espinoza JL, Takami A, Trung LQ, Kato S and Nakao S: Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV immortalized human B cells. PLoS One. 7:e13062012. View Article : Google Scholar | |
Kashanchi F, Araujo J, Doniger J, Muralidhar S, Hoch R, Khleif S, Mendelson E, Thompson J, Azumi N, Brady JN, et al: Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene. 14:359–367. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lacroix A, Collot-Teixeira S, Mardivirin L, Jaccard A, Petit B, Piguet C, Sturtz F, Preux P-M, Bordessoule D and Ranger-Rogez S: Involvement of human herpesvirus-6 variant B in classic Hodgkin's lymphoma via DR7 oncoprotein. Clin Cancer Res. 16:4711–4721. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Matta H and Chaudhary PM: Kaposi's sarcoma associated herpes virus-encoded viral FLICE inhibitory protein activates transcription from HIV-1 Long Terminal Repeat via the classical NF-kappaB pathway and functionally cooperates with Tat. Retrovirology. 2:92005. View Article : Google Scholar | |
Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al Abdulmohsen S, Platanias LC, Al-Kuraya KS and Uddin S: Cross-talk between NF-κB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One. 7:e399452012. View Article : Google Scholar | |
Sun SC and Ballard DW: Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: Hijacking cellular IkappaB kinases. Oncogene. 18:6948–6958. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shehata MF: Rel/Nuclear factor-kappa B apoptosis pathways in human cervical cancer cells. Cancer Cell Int. 5:102005. View Article : Google Scholar : PubMed/NCBI | |
Németh ZH, Deitch EA, Szabó C and Haskó G: Pyrrolidine-dithiocarbamate inhibits NF-kappaB activation and IL-8 production in intestinal epithelial cells. Immunol Lett. 85:41–46. 2003. View Article : Google Scholar | |
Wang W, Nag SA and Zhang R: Targeting the NF-κB signaling pathways for breast cancer prevention and therapy. Curr Med Chem. 22:264–289. 2015. View Article : Google Scholar | |
Guzmán EA, Maers K, Roberts J, Kemami-Wangun HV, Harmody D and Wright AE: The marine natural product micro-sclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 33:86–94. 2015. View Article : Google Scholar | |
Chan R, Gilbert M, Thompson KM, Marsh HN, Epstein DM and Pendergrast PS: Co-expression of anti-NFkappaB RNA aptamers and siRNAs leads to maximal suppression of NFkappaB activity in mammalian cells. Nucleic Acids Res. 34:e362006. View Article : Google Scholar : PubMed/NCBI | |
McKenna S and Wright CJ: Inhibiting IκBβ/NF-κB signaling attenuates the expression of select pro-inflammatory genes. J Cell Sci. 128:2143–2155. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang HC, Lin KH, Tai YT, Chen JT and Chen RM: Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor-mediated activation of ERK1/2 and NF-κB. Shock. 33:486–492. 2010. | |
García-Piñeres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL and Merfort I: Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem. 276:39713–39720. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liang MC, Bardhan S, Porco JA Jr and Gilmore TD: The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line. Cancer Lett. 241:69–78. 2006. View Article : Google Scholar | |
Liang MC, Bardhan S, Pace EA, Rosman D, Beutler JA, Porco JA Jr and Gilmore TD: Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: Correlation with its anti-cancer cell growth activity. Biochem Pharmacol. 71:634–645. 2006. View Article : Google Scholar | |
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC and Baltimore D: Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal. 6:ra752013. View Article : Google Scholar | |
Selvan N, Maiappa D, van den Toom HWP, Heck AJK, Ferenbach AT and van Aalten DMF: The early metazoan Trichoplax adhaerens possesses a functional O-GlcNAc system. J Biol Chem. 250:11969–11982. 2015. View Article : Google Scholar | |
Sümegi M, Hunyadi-Gulyás E, Medzihradszky KF and Udvardy A: 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem Biophys Res Commun. 312:1284–1289. 2003. View Article : Google Scholar : PubMed/NCBI | |
Heyne K, Winter C, Gerten F, Schmidt C and Roemer K: A novel mechanism of crosstalk between p53 and NF-κB pathways. Cell Cycle. 12:2479–2482. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cha B, Lim JW and Kim H: Jak1/Stat3 is an upstream signaling of NF-κB activation in Helicobacter pylori-induced IL-8 production in gastric epithelial AGS cells. Yonsei Med J. 56:862–866. 2015. View Article : Google Scholar : PubMed/NCBI | |
Linher-Melville K, Haftchenary S, Gunning P and Singh G: Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells. Mol Cell Biochem. 405:205–221. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pramanik KC, Fofaria NM, Gupta P, Ranjan A, Kim SH and Srivastava SK: Inhibition of β-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear β-catenin/TCF-1 complex: Critical role of STAT-3. Oncotarget. 6:11561–11574. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinou JC and Kroemer G: Autophagy: Evolutionary and pathophysiological insights. Biochim Biophys Acta. 1793:1395–1396. 2009. View Article : Google Scholar : PubMed/NCBI | |
Katayama H, Kogure T, Mizushima N, Yoshimori T and Miyawaki A: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol. 18:1042–1052. 2011. View Article : Google Scholar : PubMed/NCBI | |
Buzgariu W, Chera S and Galliot B: Methods to investigate autophagy during starvation and regeneration in hydra. Methods Enzymol. 451:409–437. 2008. View Article : Google Scholar | |
Chera S, Buzgariu W, Ghila L and Galliot B: Autophagy in Hydra: A response to starvation and stress in early animal evolution. Biochim Biophys Acta. 1793:1432–1443. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dunn SR, Schnitzler CE and Weis VM: Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: Every which way you lose. Proc Biol Sci. 274:3079–3085. 2007. View Article : Google Scholar : PubMed/NCBI | |
Buss LW, Anderson C, Westerman E, Kritzberger C, Poudyal M, Moreno MA and Lakkis FG: Allorecognition triggers autophagy and subsequent necrosis in the cnidarian Hydractinia symbiolon-gicarpus. PLoS One. 7:e489142012. View Article : Google Scholar | |
Petersen HO, Höger SK, Looso M, Lengfeld T, Kuhn A, Warnken U, Nishimiya-Fujisawa C, Schnölzer M, Krüger M, Özbek S, et al: A comprehensive transcriptomic and proteomic analysis of hydra head regeneration. Mol Biol Evol. April 2–2015.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Galliot B: Autophagy and self-preservation: A step ahead from cell plasticity? Autophagy. 2:231–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Galliot B, Miljkovic-Licina M, Ghila L and Chera S: RNAi gene silencing affects cell and developmental plasticity in hydra. C R Biol. 330:491–497. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K and Galliot B: Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci. 119:846–857. 2006. View Article : Google Scholar : PubMed/NCBI | |
Räty S, Sand J, Laukkarinen J, Vasama K, Bassi C, Salvia R and Nordback I: Cyst fluid SPINK1 may help to differentiate benign and potentially malignant cystic pancreatic lesions. Pancreatology. 13:530–533. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lempinen M, Paju A, Kemppainen E, Smura T, Kylänpää ML, Nevanlinna H, Stenman J and Stenman UH: Mutations N34S and P55S of the SPINK1 gene in patients with chronic pancreatitis or pancreatic cancer and in healthy subjects: A report from Finland. Scand J Gastroenterol. 40:225–230. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shimosegawa T, Kume K and Satoh K: Chronic pancreatitis and pancreatic cancer: Prediction and mechanism. Clin Gastroenterol Hepatol. 7(Suppl 11): S23–S28. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koehler A, Desser S, Chang B, MacDonald J, Tepass U and Ringuette M: Molecular evolution of SPARC: Absence of the acidic module and expression in the endoderm of the starlet sea anemone, Nematostella vectensis. Dev Genes Evol. 219:509–521. 2009. View Article : Google Scholar | |
Fritzenwanker JH, Saina M and Technau U: Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol. 275:389–402. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sinkovics JG: Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review). Int J Oncol. 35:441–465. 2009. View Article : Google Scholar : PubMed/NCBI | |
Grant JL, Fishbein MC, Hong LS, Krysan K, Minna JD, Shay JW, Walser TC and Dubinett SM: A novel molecular pathway for Snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis. Cancer Prev Res (Phila). 7:150–160. 2014. View Article : Google Scholar | |
Kaleağasıoğlu F and Berger MR: SIBLINGs and SPARC families: Their emerging roles in pancreatic cancer. World J Gastroenterol. 20:14747–14759. 2014. View Article : Google Scholar | |
Yang F, Zhou X, Miao X, Zhang T, Hang X, Tie R, Liu N, Tian F, Wang F and Yuan J: MAGEC2, an epithelial-mesenchymal transition inducer, is associated with breast cancer metastasis. Breast Cancer Res Treat. 145:23–32. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JC, Sher D, Eisenstein M, Shigesada K, Reitzel AM, Marlow H, Levanon D, Groner Y, Finnerty JR and Gat U: The evolutionary origin of the Runx/CBFbeta transcription factors--studies of the most basal metazoans. BMC Evol Biol. 8:2282008. View Article : Google Scholar : PubMed/NCBI | |
Klunker S, Chong MMW, Mantel PY, Palomares O, Bassin C, Ziegler M, Rückert B, Meiler F, Akdis M, Littman DR, et al: Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J Exp Med. 206:2701–2715. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lück SC, Russ AC, Du J, Gaidzik V, Schlenk RF, Pollack JR, Döhner K, Döhner H and Bullinger L: KIT mutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol. 148:925–937. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Zhao X, Wang L, Elf S, Xu H, Zhao X, Sashida G, Zhang Y, Liu Y, Lee J, et al: The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood. 118:6544–6552. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bledsoe KL, McGee-Lawrence ME, Camilleri ET, Wang X, Riester SM, van Wijnen AJ, Oliveira AM and Westendorf JJ: RUNX3 facilitates growth of Ewing sarcoma cells. J Cell Physiol. 229:2049–2056. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY and Kuo PL: Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem. 286:37335–37346. 2011. View Article : Google Scholar : PubMed/NCBI | |
Estécio MR, Maddipoti S, Bueso-Ramos C, DiNardo CD, Yang H, Wei Y, Kondo K, Fang Z, Stevenson W, Chang KS, et al: RUNX3 promoter hypermethylation is frequent in leukaemia cell lines and associated with acute myeloid leukaemia inv(16) subtype. Br J Haematol. 169:344–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martin JW, Zielenska M, Stein GS, van Wijnen AJ and Squire JA: The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma. 2011:2827452011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Goldstein D, Crowe PJ and Yang JL: Impact of STAT3 inhibition on survival of osteosarcoma cell lines. Anticancer Res. 34:6537–6545. 2014.PubMed/NCBI | |
Yang Q, Zhang S, Kang M, Dong R and Zhao J: Synergistic growth inhibition by sorafenib and cisplatin in human osteosar-coma cells. Oncol Rep. 33:2537–2544. 2015.PubMed/NCBI | |
Sinkovics JG: Cytolytic Immune Lymphocytes. Schenk Buchverlag Passau; Germany; Dialog Campus, Budapest: pp. 2802008 | |
Burgess M and Tawbi H: Immunotherapeutic approaches to sarcoma. Curr Treat Options Oncol. 16:3452015. View Article : Google Scholar | |
Matus DQ, Magie CR, Pang K, Martindale MQ and Thomsen GH: The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol. 313:501–518. 2008. View Article : Google Scholar : | |
Bürglin TR: Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif. BMC Genomics. 9:1272008. View Article : Google Scholar : PubMed/NCBI | |
McCabe JM and Leahy DJ: Smoothened goes molecular: New pieces in the hedgehog signaling puzzle. J Biol Chem. 290:3500–3507. 2015. View Article : Google Scholar | |
Warner JF, McCarthy AM, Morris RL and McClay DR: Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol. 31:18–22. 2014. View Article : Google Scholar : | |
Kern D, Regl G, Hofbauer SW, Altenhofer P, Achatz G, Dlugosz A, Schnidar H, Greil R, Hartmann TN and Aberger F: Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene. 2015, doi.org/10.1038/onc.2014.450urisimpledoi.org/10.1038/onc.2014.450. View Article : Google Scholar | |
Giakoustidis A, Giakoustidis D, Mudan S, Sklavos A and Williams R: Molecular signalling in hepatocellular carcinoma: Role of and crosstalk among WNT/β-catenin, Sonic Hedgehog, Notch and Dickkopf-1. Can J Gastroenterol Hepatol. 29:212–211. 2015. | |
Layden MJ and Martindale MQ: Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. Evodevo. 5:302014. View Article : Google Scholar | |
Layden MJ, Boekhout M and Martindale MQ: Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development. 139:1013–1022. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marlow H, Roettinger E, Boekhout M and Martindale MQ: Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol. 362:295–308. 2012. View Article : Google Scholar | |
Krejcí A and Bray S: Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21:1322–1327. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guito J and Lukac DM: KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses. 7:72–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spadavecchia S, Gonzalez-Lopez O, Carroll KD, Palmeri D and Lukac DM: Convergence of Kaposi's sarcoma-associated herpesvirus reactivation with Epstein-Barr virus latency and cellular growth mediated by the notch signaling pathway in coinfected cells. J Virol. 84:10488–10500. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rettig EM, Chung CH, Bishop JA, Howard JD, Sharma R, Li RJ, Douville C, Karchin R, Izumchenko E, Sidransky D, et al: Cleaved NOTCH1 expression pattern in head and neck squamous cell carcinoma is associated with NOTCH1 mutation, HPV status, and high risk features. Cancer Prev Res (Phila). 8:287–295. 2015. View Article : Google Scholar | |
Ayaz F and Osborne BA: Non-canonical notch signaling in cancer and immunity. Front Oncol. 4:3452014. View Article : Google Scholar : PubMed/NCBI | |
Jager M, Quéinnec E, Le Guyader H and Manuel M: Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Evodevo. 2:122011. View Article : Google Scholar : PubMed/NCBI | |
Shinzato C, Iguchi A, Hayward DC, Technau U, Ball EE and Miller DJ: Sox genes in the coral Acropora millepora: Divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa. BMC Evol Biol. 8:3112008. View Article : Google Scholar : PubMed/NCBI | |
Richards GS and Rentzsch F: Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development. 141:4681–4689. 2014. View Article : Google Scholar : PubMed/NCBI | |
Magie CR, Pang K and Martindale MQ: Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol. 215:618–630. 2005. View Article : Google Scholar : PubMed/NCBI | |
Thu KL, Becker-Santos DD, Radulovich N, Pikor LA, Lam WL and Tsao MS: SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types. Oncoscience. 1:326–335. 2014. | |
Sinkovics JG: The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp). 5:25–43. 2015. View Article : Google Scholar | |
Ryan JF and Baxevanis AD: Hox, Wnt, and the evolution of the primary body axis: Insights from the early-divergent phyla. Biol Direct. 2:372007. View Article : Google Scholar : PubMed/NCBI | |
Holstein TW: The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol. 4:a0079222012. View Article : Google Scholar : PubMed/NCBI | |
Xin M: Hedgehog inhibitors: A patent review (2013 - present). Expert Opin Ther Pat. 25:549–565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lockhart NR, Waddell JA and Schrock NE: Itraconazole therapy in a pancreatic adenocarcinoma patient: A case report. J Oncol Pharm Pract. Feb 9–2015.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Huang YC, Chao KS, Liao HF and Chen YJ: Targeting sonic hedgehog signaling by compounds and derivatives from natural products. Evid Based Complement Alternat Med. 2013:7485872013. View Article : Google Scholar : PubMed/NCBI | |
Chung SS and Vadgama JV: Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NF-κB signaling. Anticancer Res. 35:39–46. 2015.PubMed/NCBI | |
Song L, Li ZY, Liu WP and Zhao MR: Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol Ther. 16:1–7. 2015. View Article : Google Scholar | |
[a] Song J, Du Z, Ravasz M, Dong B, Wang Z and Ewing RM: A protein interaction between beta-catenin and Dnmtl regulates Wnt signaling and DNA methylation in colorectal cancer cells. Mol Cancer Res. 13:969–981. 2015. View Article : Google Scholar : PubMed/NCBI [b] Jin L, Hanigan CL, Wu Y, Wang W, Park BH, Woster PM and Casero RA: Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human cancer cells in a p53- and DNMT1 (DNA methyltransferase 1)-independent manner. Biochem J. 449:459–468. 2013. View Article : Google Scholar | |
Blackburn HL, Ellsworth DL, Shriver CD and Ellsworth RE: Role of cytochrome P450 genes in breast cancer etiology and treatment: Effects on estrogen biosynthesis, metabolism, and response to endocrine therapy. Cancer Causes Control. 26:319–332. 2015. View Article : Google Scholar : PubMed/NCBI | |
Go RE, Hwang KA and Choi KC: Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 147:24–30. 2015. View Article : Google Scholar | |
[a] Yue JX, Yu JK, Putnam NH and Holland LZ: The tran-scriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: A window into chordate evolution. Genome Biol Evol. 6:2681–2696. 2014. View Article : Google Scholar : PubMed/NCBI [b] Lu TM, Luo YJ and Yu JK: BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: Insights into the evolution of the peripheral sensory system. Development. 139:2020–2030. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sinkovics JG: Horizontal gene transfers with or without cell fusions in all categories of the living matter. Adv Exp Med Biol. 714:5–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mhawech P, Berczy M, Assaly M, Herrmann F, Bouzourene H, Allal AS, Dulguerov P and Schwaller J: Human achaete-scute homologue (hASH1) mRNA level as a diagnostic marker to distinguish esthesioneuroblastoma from poorly differentiated tumors arising in the sinonasal tract. Am J Clin Pathol. 122:100–105. 2004. View Article : Google Scholar : PubMed/NCBI | |
Carney ME, O'Reilly RC, Sholevar B, Buiakova 01, Lowry LD, Keane WM, Margolis FL and Rothstein JL: Expression of the human Achaete-scute 1 gene in olfactory neuroblastoma. J Neurooncol. 26:35–43. 1995. View Article : Google Scholar : PubMed/NCBI | |
Holoye PY, Samuels ML, Smith T and Sinkovics JG: Chemoimmunotherapy of small cell bronchogenic carcinoma. Cancer. 42:34–40. 1978. View Article : Google Scholar : PubMed/NCBI | |
Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, Lee V, Tan C, Sullivan JP, Larsen JE, et al: ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA. 111:14788–14793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shabalina SA and Koonin EV: Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 23:578–587. 2008. View Article : Google Scholar : PubMed/NCBI | |
Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P and Arendt D: Ancient animal microRNAs and the evolution of tissue identity. Nature. 463:1084–1088. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS and Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 455:1193–1197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hertel J, Bartschat S, Wintsche A, Otto C and Stadler PF; Students of the Bioinformatics Computer Lab. Evolution of the let-7 microRNA family. RNA Biol. 9:231–241. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ambros V: A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell. 57:49–57. 1989. View Article : Google Scholar : PubMed/NCBI | |
Krishna S, Nair A, Cheedipudi S, Poduval D, Dhawan J, Palakodeti D and Ghanekar Y: Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata. Nucleic Acids Res. 41:599–616. 2013. View Article : Google Scholar : | |
Juliano CE, Reich A, Liu N, Götzfried J, Zhong M, Uman S, Reenan RA, Wessel GM, Steele RE and Lin H: PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci USA. 111:337–342. 2014. View Article : Google Scholar : | |
Chen P, Xi Q, Wang Q and Wei P: Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol. 31:2352014. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D and Rao B: MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 31:2055–2062. 2014.PubMed/NCBI | |
Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, You MJ, Teruya-Feldstein J, Wang M, Gupta S, et al: miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 10:e10041772014. View Article : Google Scholar : PubMed/NCBI | |
Ng WL, Yan D, Zhang X, Mo YY and Wang Y: Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 9:1170–1175. 2010. View Article : Google Scholar | |
Morais DR, Reis ST, Viana N, Piantino CB, Massoco C, Moura C, Dip N, Silva IA, Srougi M and Leite KRM: The involvement of miR-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability. Cancer Cell Int. 14:1192014. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li X, Yu C, Wang M, Peng F, Xiao J, Tian R, Jiang J and Sun C: MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35:11751–11759. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, Song L and Peng X: Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 45:362–372. 2014.PubMed/NCBI | |
Ghose J and Bhattacharyya NP: Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/Hdh(Q7) cells and human cervical carcinoma HeLa cells. RNA Biol. 12:457–477. 2015. View Article : Google Scholar | |
Ma X, Li C, Sun L, Huang D, Li T, He X, Wu G, Yang Z, Zhong X, Song L, et al: Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun. 5:52122014. View Article : Google Scholar : PubMed/NCBI | |
Sinkovics JG: Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions (Review). Int J Oncol. 40:305–349. 2012. | |
Iliopoulos D, Hirsch HA and Struhl K: An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 139:693–706. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bosch TC, Unger TF, Fisher DA and Steele RE: Structure and expression of STK, a src-related gene in the simple metazoan Hydra attenuata. Mol Cell Biol. 9:4141–4151. 1989.PubMed/NCBI | |
Baumgarten S, Bayer T, Aranda M, Liew YJ, Carr A, Micklem G and Voolstra CR: Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics. 14:7042013. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Ramos DV and Baums IB: Microsatellite abundance across the Anthozoa and Hydrozoa in the phylum Cnidaria. BMC Genomics. 15:9392014. View Article : Google Scholar : PubMed/NCBI | |
Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, et al: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 466:720–726. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kerner P, Degnan SM, Marchand L, Degnan BM and Vervoort M: Evolution of RNA-binding proteins in animals: Insights from genome-wide analysis in the sponge Amphimedon queenslandica. Mol Biol Evol. 28:2289–2303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, et al: The Trichoplax genome and the nature of placozoans. Nature. 454:955–960. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schierwater B, de Jong D and Desalle R: Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol. 41:370–379. 2009. View Article : Google Scholar | |
Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, et al: The ctenophore genome and the evolutionary origins of neural systems. Nature. 510:109–114. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nelson DR, Goldstone JV and Stegeman JJ: The cytochrome P-450 genesis locus: the origin and evolution of animal cytochrome P450. Philos Trans R Soc Lond B Biol Sci. 368:2012.04742013. | |
Robertson AJ, Larroux C, Degnan BM and Coffman JA: The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge. BMC Res Notes. 2:592009. View Article : Google Scholar : PubMed/NCBI | |
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A and Finnerty JR: Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics. 15:712014. View Article : Google Scholar : PubMed/NCBI | |
Fernández JG, Rodríguez DA, Valenzuela M, Calderon C, Urzúa U, Munroe D, Rosas C, Lemus D, Díaz N, Wright MC, et al: Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol Cancer. 13:2092014. View Article : Google Scholar | |
Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H and Manuel M: Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS One. 8:e843632013. View Article : Google Scholar | |
Pang K, Ryan JF, Mullikin JC, Baxevanis AD and Martindale MQ; NISC Comparative Sequencing Program. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evodevo. 1:102010. View Article : Google Scholar : PubMed/NCBI | |
Schnitzler CE, Simmons DK, Pang K, Martindale MQ and Baxevanis AD: Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. Evodevo. 5:152014. View Article : Google Scholar : PubMed/NCBI | |
Hua HW, Jiang F, Huang Q, Liao Z and Ding G: MicroRNA-153 promotes Wnt/β-catenin activation in hepatocellular carcinoma through suppression of WWOX. Oncotarget. 6:3840–3847. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan HC, Xu J, Fang LS, Qiu YY, Lin XM, Huang HX and Han QY: Ectopic expression of the WWOX gene suppresses stemness of human ovarian cancer stem cells. Oncol Lett. 9:1614–1620. 2015.PubMed/NCBI | |
Ma R, Jiang T and Kang X: Circulating microRNAs in cancer: Origin, function and application. J Exp Clin Cancer Res. 31:382012. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Oh S-Y, Do SI, Lee HJ, Kang HJ, Rho YS, Bae WJ and Lim YC: SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer. 111:2122–2130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Irshad K, Mohapatra SK, Srivastava C, Garg H, Mishra S, Dikshit B, Sarkar C, Gupta D, Chandra PS, Chattopadhyay P, et al: A combined gene signature of hypoxia and notch pathway in human glioblastoma and its prognostic relevance. PLoS One. 10:e01182012015. View Article : Google Scholar : PubMed/NCBI | |
Robert J: Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol. 34:915–925. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey CJ, Yu J, Becker H, Maharry K, et al: Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell. 17:333–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S and Hayden MS: Celebrating 25 years of NF-κB research. Immunol Rev. 246:5–13. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiao G and Fu J: NF-κB and cancer: A paradigm of Yin-Yang. Am J Cancer Res. 1:192–221. 2011. | |
Ueda Y and Richmond A: NF-kappaB activation in melanoma. Pigment Cell Res. 19:112–124. 2006. View Article : Google Scholar : PubMed/NCBI | |
Patel PS, Varney ML, Dave BJ and Singh RK: Regulation of constitutive and induced NF-kappaB activation in malignant melanoma cells by capsaicin modulates interleukin-8 production and cell proliferation. J Interferon Cytokine Res. 22:427–435. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martini M, Ciraolo E, Gulluni F and Hirsch E: Targeting PI3K in cancer: Any good news? Front Oncol. 3:1082013. View Article : Google Scholar : PubMed/NCBI | |
Editorial. FDA approves PI3K inhibitor, idelalisib for treatment of relapsed CLL, follicular jymphoma and small lymphocytic lymphoma. Science & Education on Oncology PRO. http://oncologypro.esmo.org. | |
Mukohara T: PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer. 7:111–123. 2015.PubMed/NCBI | |
Sinkovics JG: Antileukemia and antitumor effects of the graft-versus-host disease: A new immunovirological approach. Acta Microbiol Immunol Hung. 57:253–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
Geiger TL and Rubnitz JE: New approaches for the immunotherapy of acute myeloid leukemia. Discov Med. 19:275–284. 2015.PubMed/NCBI | |
Magee MS and Snook AE: Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer. Discov Med. 18:265–271. 2014.PubMed/NCBI | |
Sinkovics JG and Horvath JC: Human natural killer cells: A comprehensive review. Int J Oncol. 27:5–47. 2005.PubMed/NCBI | |
Bruchard M and Ghiringhelli F: Microenvironment tumoral. Cellules régulatrices et cytokines immunosuppressives. Med Sci. 30:429–435. 2014. | |
Old LJ: Tumor necrosis factor (TNF). Science. 230:630–632. 1985. View Article : Google Scholar : PubMed/NCBI | |
Urschel K and Cicha I: TNF-α in the cardiovascular system: from physiology to therapy. Internat J Interferon Cytokine Med Res. 7:9–25. 2015. | |
Quistad SD, Stotland A, Barott KL, Smurthwaite CA, Hilton BJ, Grasis JA, Wolkowicz R and Rohwer FL: Evolution of TNF-induced apoptosis reveals 550 My functional conservation. Proc Natl Acad Sci USA. 111:9567–9572. 2014. View Article : Google Scholar | |
Spandidos DA and Lang JC: In vitro cell transformation by ras oncogenes. Crit Rev Oncog. 1:195–209. 1989.PubMed/NCBI |
Journal Information
Journal ID (publisher-id): IJO
Title: International Journal of Oncology
ISSN (print): 1019-6439
ISSN (electronic): 1791-2423
Publisher: D.A. Spandidos
Article Information
Copyright © 2015, Spandidos Publications
Copyright: 2015
License (open-access, https://creativecommons.org/licenses/by-nc-nd/4.0):
This is an open access article distributed under the terms of a Creative Commons Attribution License
Publication date (collection): October 2015
Volume: 47
Issue: 4
Page: 1229
Publisher ID: ijo-47-04-1211
AddendumInt J Oncol 19: 473–488, 2001; DOI: 10.3892/ijo.19.3.473
The authors would like to acknowledge that the Coriphosphine O stain shown in the upper panel of Figure 8 was a kind gift from Dr T.P. Loughran of the H.L. Moffitt Cancer Center, Tampa, FL, USA.
Article Information (continued)
Categories:
Subject: Articles
Process warnings
Warnings reported by the processor due to anomalous or incomplete markup follow:
Elements are cross-referenced without labels.
Either the element should be provided a label, or their cross-reference(s) should have literal text content.
{ label needed for corresp[@id='c1-ijo-47-04-1211'] }This display is generated from NLM/NCBI Journal Publishing 3.0 XML with jpub3-html.xsl. The XSLT engine is Saxonica