1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Amling CL: Diagnosis and management of
superficial bladder cancer. Curr Probl Cancer. 25:219–278. 2001.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bulbul MA, Husseini N and Houjaij A:
Superficial bladder cancer epidemiology, diagnosis and management.
J Med Liban. 53:107–113. 2005.
|
4
|
Zuiverloon TC, Nieuweboer AJ, Vekony H,
Kirkels WJ, Bangma CH and Zwarthoff EC: Markers predicting response
to bacillus Calmette Guerin immunotherapy in high-risk bladder
cancer patients: a systematic review. Eur Urol. 61:128–145. 2012.
View Article : Google Scholar
|
5
|
Vinall RL, Ripoll AZ, Wang S, Pan CX and
deVere White RW: MiR-34a chemosensitizes bladder cancer cells to
cisplatin treatment regardless of p53-Rb pathway status. Int J
Cancer. 130:2526–2538. 2012. View Article : Google Scholar
|
6
|
Luke C, Tracey E, Stapleton A and Roder D:
Exploring contrary trends in bladder cancer incidence, mortality
and survival: implications for research and cancer control. Intern
Med J. 40:357–362. 2010. View Article : Google Scholar
|
7
|
Jiang QQ, Liu B and Yuan T: MicroRNA-16
inhibits bladder cancer proliferation by targeting Cyclin D1. Asian
Pac J Cancer Prev. 14:4127–4130. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bellmunt J and Petrylak DP: New
therapeutic challenges in advanced bladder cancer. Semin Oncol.
39:598–607. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: Micrornas: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim VN, Han J and Siomi MC: Biogenesis of
small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Thomson DW, Bracken CP and Goodall GJ:
Experimental strategies for microRNA target identification. Nucleic
Acids Res. 39:6845–6853. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wiemer EA: The role of microRNAs in
cancer: no small matter. Eur J Cancer. 43:1529–1544. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Andrew AS, Marsit CJ, Schned AR, Seigne
JD, Kelsey KT, Moore JH, Perreard L, Karagas MR and Sempere LF:
Expression of tumor suppressive microRNA-34a is associated with a
reduced risk of bladder cancer recurrence. Int J Cancer. Dec
29–2014.(Epub ahead of print). View Article : Google Scholar
|
14
|
Zhang T, Wang J, Zhai X, Li H, Li C and
Chang J: MiR-124 retards bladder cancer growth by directly
targeting CDK4. Acta Biochim Biophys Sin (Shanghai). 46:1072–1079.
2014. View Article : Google Scholar
|
15
|
Wang X, Wu J, Lin Y, Zhu Y, Xu X, Xu X,
Liang Z, Li S, Hu Z, Zheng X and Xie L: MicroRNA-320c inhibits
tumorous behaviors of bladder cancer by targeting Cyclin-dependent
kinase 6. J Exp Clin Cancer Res. 33:692014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zeng T, Peng L, Chao C, Fu B, Wang G, Wang
Y and Zhu X: miR-451 inhibits invasion and proliferation of bladder
cancer by regulating EMT. Int J Clin Exp Pathol. 7:7653–7662.
2014.
|
17
|
Liang Z, Li S, Xu X, Xu X, Wang X, Wu J,
Zhu Y, Hu Z, Lin Y, Mao Y, et al: MicroRNA-576-3p inhibits
proliferation in bladder cancer cells by targeting cyclin D1. Mol
Cells. 38:130–137. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Feng Y, Liu J, Kang Y, He Y, Liang B, Yang
P and Yu Z: miR-19a acts as an oncogenic microRNA and is
up-regulated in bladder cancer. J Exp Clin Cancer Res. 33:672014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiu Y, Liu Z, Xia S, Jin C, Yin H, Zhao W
and Wu Q: MicroRNA-137 upregulation increases bladder cancer cell
proliferation and invasion by targeting PAQR3. PLoS One.
9:e1097342014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang DQ, Zhou CK, Jiang XW, Chen J and
Shi BK: Increased expression of miR-222 is associated with poor
prognosis in bladder cancer. World J Surg Oncol. 12:2412014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu
Y, Li C, Su L, Zhu Z, Xiang M, Liu B and Yang Q: Tumor suppressor
miR-24 restrains gastric cancer progression by downregulating
RegIV. Mol Cancer. 13:1272014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Song L, Yang J, Duan P, Xu J, Luo X, Luo
F, Zhang Z, Hou T, Liu B and Zhou Q: MicroRNA-24 inhibits
osteosarcoma cell proliferation both in vitro and in vivo by
targeting LPAATβ. Arch Biochem Biophys. 535:128–135. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yin JY, Deng ZQ, Liu FQ, Qian J, Lin J,
Tang Q, Wen XM, Zhou JD, Zhang YY and Zhu XW: Association between
mir-24 and mir-378 in formalin-fixed paraffin-embedded tissues of
breast cancer. Int J Clin Exp Pathol. 7:4261–4267. 2014.PubMed/NCBI
|
24
|
Liu YX, Long XD, Xi ZF, Ma Y, Huang XY,
Yao JG, Wang C, Xing TY and Xia Q: MicroRNA-24 modulates aflatoxin
B1-related hepatocellular carcinoma prognosis and tumorigenesis.
Biomed Res Int. 2014:4829262014.PubMed/NCBI
|
25
|
Blonska M and Lin X: NF-kappaB signaling
pathways regulated by CARMA family of scaffold proteins. Cell Res.
21:55–70. 2010. View Article : Google Scholar
|
26
|
Wang L, Guo Y, Huang WJ, Ke X, Poyet JL,
Manji GA, Merriam S, Glucksmann MA, DiStefano PS, Alnemri ES and
Bertin J: Card10 is a novel caspase recruitment
domain/membrane-associated guanylate kinase family member that
interacts with BCL10 and activates NF-kappa B. J Biol Chem.
276:21405–21409. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Banan A, Zhang LJ, Farhadi A, Fields JZ,
Shaikh M and Keshavarzian A: PKC-beta1 isoform activation is
required for EGF-induced NF-kappaB inactivation and IkappaBalpha
stabilization and protection of F-actin assembly and barrier
function in enterocytemonolayers. Am J Physiol Cell Physiol.
286:C723–C738. 2004. View Article : Google Scholar
|
28
|
McAllister-Lucas LM, Ruland J, Siu K, Jin
X, Gu S, Kim DS, Kuffa P, Kohrt D, Mak TW, Nuñez G and Lucas PC:
CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates
angiotensin II-responsive inflammatory signaling in nonimmune
cells. Proc Natl Acad Sci USA. 104:139–144. 2007. View Article : Google Scholar
|
29
|
Grabiner BC, Blonska M, Lin PC, You Y,
Wang D, Sun J, Darnay BG, Dong C and Lin X: CARMA3 deficiency
abrogates G protein-coupled receptor-induced NF-κB activation.
Genes Dev. 21:984–996. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang D, You Y, Lin PC, Xue L, Morris SW,
Zeng H, Wen R and Lin X: Bcl10 plays a critical role in NF-kappaB
activation induced by G protein-coupled receptors. Proc Natl Acad
Sci USA. 104:145–150. 2007. View Article : Google Scholar
|
31
|
Wu GL, Yuan JL, Huang XD, Rong JF, Zhang
LX, Liu YP and Wang FL: Evaluating the expression of CARMA3 as a
prognostic tumor marker in renal cell carcinoma. Tumour Biol.
34:3431–3435. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao T, Miao Z, Wang Z, Xu Y, Wu J, Liu X,
You Y and Li J: CARMA3 overexpression accelerates cell
proliferation and inhibits paclitaxel-induced apoptosis through
NF-kappaB regulation in breast cancer cells. Tumour Biol.
34:3041–3047. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Miao Z, Zhao T, Wang Z, Xu Y, Song Y, Wu J
and Xu H: CARMA3 is overexpressed in colon cancer and regulates
NF-kappaB activity and cyclin D1 expression. Biochem Biophys Res
Commun. 425:781–787. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Man X, He J, Kong C, Zhu Y and Zhang Z:
Clinical significance and biological roles of CARMA3 in human
bladder carcinoma. Tumour Biol. 35:4131–4136. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang T, Grabiner B, Zhu Y, Jiang C, Li H,
You Y, Lang J, Hung MC and Lin X: CARMA3 is crucial for
EGFR-Induced activation of NF-kappaB and tumor progression. Cancer
Res. 71:2183–2192. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Borthakur A, Bhattacharyya S, Alrefai WA,
Tobacman JK, Ramaswamy K and Dudeja PK: Platelet-activating
factor-induced NF-kappaB activation and IL-8 production in
intestinal epithelial cells are Bcl10-dependent. Inflamm Bowel Dis.
16:593–603. 2010. View Article : Google Scholar
|
37
|
Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J
and Sung JJ: MicroRNA dysregulation in gastric cancer: a new player
enters the game. Oncogene. 29:5761–5771. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Miao J, Wu S, Peng Z, Tania M and Zhang C:
MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects.
Tumour Biol. 34:2093–2098. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yin J, Lin J, Luo X, Chen Y, Li Z, Ma G
and Li K: miR-137: a new player in schizophrenia. Int J Mol Sci.
15:3262–3271. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Vogelstein B and Kinzler KW: Cancer genes
and the pathways they control. Nat Med. 10:789–799. 2004.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Nevins JR: The Rb/E2F pathway and cancer.
Hum Mol Genet. 10:699–703. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan
J and Wang L: The significance of expression of autophagy-related
gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol.
32:1163–1171. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Korbakis D and Scorilas A: Quantitative
expression analysis of the apoptosis-related genes BCL2, BAX and
BCL2L12 in gastric adenocarcinoma cells following treatment with
the anticancer drugs cisplatin, etoposide and taxol. Tumour Biol.
33:865–875. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li Z, Qu L, Dong Q, Huang B, Li H, Tang Z,
Xu Y, Luo W, Liu L, Qiu X and Wang E: Overexpression of CARMA3 in
non-small-cell lung cancer is linked for tumor progression. PLoS
One. 7:e369032012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Du S, Jia L, Zhang Y, Fang L, Zhang X and
Fan Y: CARMA3 is upregulated in human pancreatic carcinoma, and its
depletion inhibits tumor proliferation, migration, and invasion.
Tumour Biol. 35:5965–5970. 2014. View Article : Google Scholar : PubMed/NCBI
|