1
|
Sipos JA and Mazzaferri EL: Thyroid cancer
epidemiology and prognostic variables. Clin Oncol (R Coll Radiol).
22:395–404. 2010. View Article : Google Scholar
|
2
|
Kim DS, McCabe CJ, Buchanan MA and
Watkinson JC: Oncogenes in thyroid cancer. Clin Otolaryngol Allied
Sci. 28:386–395. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Urciuoli P, Ghinassi S, Iavarone C,
Peparini N, D’Orazi V, Gabatel R, Pichelli D, Iachetta RP and
Custureri F: Thyroid anaplastic tumor: Our experience. Chir Ital.
55:835–840. 2003.(In Italian).
|
4
|
Pulcrano M, Boukheris H, Talbot M, Caillou
B, Dupuy C, Virion A, De Vathaire F and Schlumberger M: Poorly
differentiated follicular thyroid carcinoma: Prognostic factors and
relevance of histological classification. Thyroid. 17:639–646.
2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rajhbeharrysingh U, Taylor M and Milas M:
Medical therapy for advanced forms of thyroid cancer. Surg Clin
North Am. 94:541–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nguyen QT, Lee EJ, Huang MG, Park YI,
Khullar A and Plodkowski RA: Diagnosis and treatment of patients
with thyroid cancer. Am Health Drug Benefits. 8:30–40.
2015.PubMed/NCBI
|
7
|
Hainaut P and Hollstein M: p53 and human
cancer: The first ten thousand mutations. Adv Cancer Res.
77:81–137. 2000. View Article : Google Scholar
|
8
|
Beckerman R and Prives C: Transcriptional
regulation by p53. Cold Spring Harb Perspect Biol. 2:a0009352010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tchelebi L, Ashamalla H and Graves PR:
Mutant p53 and the response to chemotherapy and radiation. Subcell
Biochem. 85:133–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Milner J and Medcalf EA: Cotranslation of
activated mutant p53 with wild type drives the wild-type p53
protein into the mutant conformation. Cell. 65:765–774. 1991.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Blandino G, Levine AJ and Oren M: Mutant
p53 gain of function: Differential effects of different p53 mutants
on resistance of cultured cells to chemotherapy. Oncogene.
18:477–485. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gurtner A, Starace G, Norelli G, Piaggio
G, Sacchi A and Bossi G: Mutant p53-induced up-regulation of
mitogen-activated protein kinase kinase 3 contributes to gain of
function. J Biol Chem. 285:14160–14169. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ubertini V, Norelli G, D’Arcangelo D,
Gurtner A, Cesareo E, Baldari S, Gentileschi MP, Piaggio G, Nisticò
P, Soddu S, et al: Mutant p53 gains new function in promoting
inflammatory signals by repression of the secreted interleukin-1
receptor antagonist. Oncogene. 34:2493–2504. 2015. View Article : Google Scholar
|
14
|
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA,
Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, et
al: Gain of function of a p53 hot spot mutation in a mouse model of
Li-Fraumeni syndrome. Cell. 119:861–872. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Olive KP, Tuveson DA, Ruhe ZC, Yin B,
Willis NA, Bronson RT, Crowley D and Jacks T: Mutant p53 gain of
function in two mouse models of Li-Fraumeni syndrome. Cell.
119:847–860. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Donghi R, Longoni A, Pilotti S, Michieli
P, Della Porta G and Pierotti MA: Gene p53 mutations are restricted
to poorly differentiated and undifferentiated carcinomas of the
thyroid gland. J Clin Invest. 91:1753–1760. 1993. View Article : Google Scholar : PubMed/NCBI
|
17
|
Parameswaran R, Brooks S and Sadler GP:
Molecular pathogenesis of follicular cell derived thyroid cancers.
Int J Surg. 8:186–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Messina RL, Sanfilippo M, Vella V, Pandini
G, Vigneri P, Nicolosi ML, Gianì F, Vigneri R and Frasca F:
Reactivation of p53 mutants by prima-1 [corrected] in thyroid
cancer cells. Int J Cancer. 130:2259–2270. 2012. View Article : Google Scholar
|
19
|
Zawacka-Pankau J and Selivanova G:
Pharmacological reactivation of p53 as a strategy to treat cancer.
J Intern Med. 277:248–259. 2015. View Article : Google Scholar
|
20
|
Puca R, Nardinocchi L, Gal H, Rechavi G,
Amariglio N, Domany E, Notterman DA, Scarsella M, Leonetti C,
Sacchi A, et al: Reversible dysfunction of wild-type p53 following
home-odomain-interacting protein kinase-2 knockdown. Cancer Res.
68:3707–3714. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Puca R, Nardinocchi L, Bossi G, Sacchi A,
Rechavi G, Givol D and D’Orazi G: Restoring wtp53 activity in HIPK2
depleted MCF7 cells by modulating metallothionein and zinc. Exp
Cell Res. 315:67–75. 2009. View Article : Google Scholar
|
22
|
Puca R, Nardinocchi L, Porru M, Simon AJ,
Rechavi G, Leonetti C, Givol D and D’Orazi G: Restoring p53 active
conformation by zinc increases the response of mutant p53 tumor
cells to anticancer drugs. Cell Cycle. 10:1679–1689. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Cho Y, Gorina S, Jeffrey PD and Pavletich
NP: Crystal structure of a p53 tumor suppressor-DNA complex:
Understanding tumorigenic mutations. Science. 265:346–355. 1994.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Loh SN: The missing zinc: p53 misfolding
and cancer. Metallomics. 2:442–449. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
D’Orazi G and Givol D: p53 reactivation:
The link to zinc. Cell Cycle. 11:2581–2582. 2012. View Article : Google Scholar :
|
26
|
Blanden AR, Yu X, Wolfe AJ, Gilleran JA,
Augeri DJ, O’Dell RS, Olson EC, Kimball SD, Emge TJ, Movileanu L,
et al: Synthetic metallochaperone ZMC1 rescues mutant p53
conformation by transporting zinc into cells as an ionophore. Mol
Pharmacol. 87:825–831. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Garufi A, Trisciuoglio D, Porru M,
Leonetti C, Stoppacciaro A, D’Orazi V, Avantaggiati M, Crispini A,
Pucci D and D’Orazi G: A fluorescent curcumin-based Zn(II)-complex
reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp
Clin Cancer Res. 32:722013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Garufi A, Pucci D, D’Orazi V, Cirone M,
Bossi G, Avantaggiati ML and D’Orazi G: Degradation of mutant
p53H175 protein by Zn(II) through autophagy. Cell Death Dis.
5:e12712014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pucci D, Bellini T, Crispini A, D’Agnano
I, Liguori PF, Garcia-Orduña P, Pirillo S, Valentini A and
Zanchetta G: DNA binding and cytotoxicity of fluorescent
curcumin-based Zn(II) complexes. Med Chem Comm. 3:462–468. 2012.
View Article : Google Scholar
|
30
|
Pucci D, Crispini A, Sanz Mendiguchía B,
Pirillo S, Ghedini M, Morelli S and De Bartolo L: Improving the
bioactivity of Zn(II)-curcumin based complexes. Dalton Trans.
42:9679–9687. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Garufi A, D’Orazi V, Arbiser JL and
D’Orazi G: Gentian violet induces wtp53 transactivation in cancer
cells. Int J Oncol. 44:1084–1090. 2014.PubMed/NCBI
|
32
|
Barth S, Glick D and Macleod KF:
Autophagy: Assays and artifacts. J Pathol. 221:117–124. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bykov VJ, Issaeva N, Shilov A, Hultcrantz
M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G:
Restoration of the tumor suppressor function to mutant p53 by a
low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Podhorecka M, Skladanowski A and Bozko P:
H2AX phosphorylation: its role in DNA damage response and cancer
therapy. J Nucleic Acids. 2010:9201612010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang W, Cheng B, Miao L, Mei Y and Wu M:
Mutant p53-R273H gains new function in sustained activation of EGFR
signaling via suppressing miR-27a expression. Cell Death Dis.
4:e5742013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu Z, Hou P, Ji M, Guan H, Studeman K,
Jensen K, Vasko V, El-Naggar AK and Xing M: Highly prevalent
genetic alterations in receptor tyrosine kinases and
phosphatidylinositol 3-kinase/akt and mitogen-activated protein
kinase pathways in anaplastic and follicular thyroid cancers. J
Clin Endocrinol Metab. 93:3106–3116. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Landriscina M, Pannone G, Piscazzi A, Toti
P, Fabiano A, Tortorella S, Occhini R, Ambrosi A, Bufo P and
Cignarelli M: Epidermal growth factor receptor 1 expression is
upregulated in undifferentiated thyroid carcinomas in humans.
Thyroid. 21:1227–1234. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Roger L, Jullien L, Gire V and Roux P:
Gain of oncogenic function of p53 mutants regulates E-cadherin
expression uncoupled from cell invasion in colon cancer cells. J
Cell Sci. 123:1295–1305. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Perl AK, Wilgenbus P, Dahl U, Semb H and
Christofori G: A causal role for E-cadherin in the transition from
adenoma to carcinoma. Nature. 392:190–193. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
D’Orazi G, Marchetti A, Crescenzi M, Coen
S, Sacchi A and Soddu S: Exogenous wt-p53 protein is active in
transformed cells but not in their non-transformed counterparts:
Implications for cancer gene therapy without tumor targeting. J
Gene Med. 2:11–21. 2000. View Article : Google Scholar
|
41
|
Martins CP, Brown-Swigart L and Evan GI:
Modeling the therapeutic efficacy of p53 restoration in tumors.
Cell. 127:1323–1334. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ventura A, Kirsch DG, McLaughlin ME,
Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R
and Jacks T: Restoration of p53 function leads to tumour regression
in vivo. Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xue W, Zender L, Miething C, Dickins RA,
Hernando E, Krizhanovsky V, Cordon-Cardo C and Lowe SW: Senescence
and tumour clearance is triggered by p53 restoration in murine
liver carcinomas. Nature. 445:656–660. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yu X, Narayanan S, Vazquez A and Carpizo
DR: Small molecule compounds targeting the p53 pathway: Are we
finally making progress? Apoptosis. 19:1055–1068. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bossi G, Lapi E, Strano S, Rinaldo C,
Blandino G and Sacchi A: Mutant p53 gain of function: Reduction of
tumor malignancy of human cancer cell lines through abrogation of
mutant p53 expression. Oncogene. 25:304–309. 2006.
|
46
|
Lan L, Luo Y, Cui D, Shi B-Y, Deng W, Huo
L-L, Chen H-L, Zhang G-Y and Deng L-L: Epithelial-mesenchymal
transition triggers cancer stem cell generation in human thyroid
cancer cells. Int J Oncol. 43:113–120. 2013.PubMed/NCBI
|
47
|
Yi H, Long B, Ye X, Zhang L, Liu X and
Zhang C: Autophagy: A potential target for thyroid cancer therapy
(Review). Mol Clin Oncol. 2:661–665. 2014.PubMed/NCBI
|
48
|
Khoo KH, Verma CS and Lane DP: Drugging
the p53 pathway: Understanding the route to clinical efficacy. Nat
Rev Drug Discov. 13:217–236. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xing M, Haugen BR and Schlumberger M:
Progress in molecular-based management of differentiated thyroid
cancer. Lancet. 381:1058–1069. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cirone M, Garufi A, Di Renzo L, Granato M,
Faggioni A and D’Orazi G: Zinc supplementation is required for the
cytotoxic and immunogenic effects of chemotherapy in chemoresistant
p53-functionally deficient cells. OncoImmunology. 2:e261982013.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Nardinocchi L, Puca R, Sacchi A, Rechavi
G, Givol D and D’Orazi G: Targeting hypoxia in cancer cells by
restoring homeodomain interacting protein-kinase 2 and p53 activity
and suppressing HIF-1alpha. PLoS One. 4:e68192009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nardinocchi L, Pantisano V, Puca R, Porru
M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D,
et al: Zinc downregulates HIF-1α and inhibits its activity in tumor
cells in vitro and in vivo. PLoS One. 5:e150482010. View Article : Google Scholar
|
53
|
Burrows N, Babur M, Resch J, Williams KJ
and Brabant G: Hypoxia-inducible factor in thyroid carcinoma. J
Thyroid Res. 2011:7629052011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Iitaka M, Kakinuma S, Fujimaki S, Oosuga
I, Fujita T, Yamanaka K, Wada S and Katayama S: Induction of
apoptosis and necrosis by zinc in human thyroid cancer cell lines.
J Endocrinol. 169:417–424. 2001. View Article : Google Scholar : PubMed/NCBI
|