1
|
Pierce KL, Premont RT and Lefkowitz RJ:
Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 3:639–650.
2002. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Reiter E, Ahn S, Shukla AK and Lefkowitz
RJ: Molecular mechanism of β-arrestin-biased agonism at
seven-transmembrane receptors. Annu Rev Pharmacol Toxicol.
52:179–197. 2012. View Article : Google Scholar
|
3
|
Rajagopal S, Ahn S, Rominger DH,
Gowen-MacDonald W, Lam CM, Dewire SM, Violin JD and Lefkowitz RJ:
Quantifying ligand bias at seven-transmembrane receptors. Mol
Pharmacol. 80:367–377. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Urban JD, Clarke WP, von Zastrow M,
Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL,
Christopoulos A, Sexton PM, et al: Functional selectivity and
classical concepts of quantitative pharmacology. J Pharmacol Exp
Ther. 320:1–13. 2007. View Article : Google Scholar
|
5
|
Chevalier N, Bouskine A and Fenichel P:
Role of GPER/GPR30 in tumoral testicular germ cells proliferation.
Cancer Biol Ther. 12:2–3. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rago V, Romeo F, Giordano F, Maggiolini M
and Carpino A: Identification of the estrogen receptor GPER in
neoplastic and non-neoplastic human testes. Reprod Biol Endocrinol.
9:1352011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Friedl P and Wolf K: Tumour-cell invasion
and migration: Diversity and escape mechanisms. Nat Rev Cancer.
3:362–374. 2003. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Mitra D, Luo X, Morgan A, Wang J, Hoang
MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, et al: An
ultraviolet-radiation-independent pathway to melanoma
carcinogenesis in the red hair/ fair skin background. Nature.
491:449–453. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Green JA, Suzuki K, Cho B, Willison LD,
Palmer D, Allen CD, Schmidt TH, Xu Y, Proia RL, Coughlin SR, et al:
The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis
of germinal center B cells and promotes niche confinement. Nat
Immunol. 12:672–680. 2011. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Chey WY and Chang TM: Secretin, 100 years
later. J Gastroenterol. 38:1025–1035. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chu JY, Lee LT, Lai CH, Vaudry H, Chan YS,
Yung WH and Chow BK: Secretin as a neurohypophysial factor
regulating body water homeostasis. Proc Natl Acad Sci USA.
106:15961–15966. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Davis RJ, Page KJ, Dos Santos Cruz GJ,
Harmer DW, Munday PW, Williams SJ, Picot J, Evans TJ, Sheldrick RL,
Coleman RA, et al: Expression and functions of the duodenal peptide
secretin and its receptor in human lung. Am J Respir Cell Mol Biol.
31:302–308. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Körner M, Hayes GM, Rehmann R, Zimmermann
A, Friess H, Miller LJ and Reubi JC: Secretin receptors in normal
and diseased human pancreas: Marked reduction of receptor binding
in ductal neoplasia. Am J Pathol. 167:959–968. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Onori P, Wise C, Gaudio E, Franchitto A,
Francis H, Carpino G, Lee V, Lam I, Miller T, Dostal DE, et al:
Secretin inhibits cholangiocarcinoma growth via dysregulation of
the cAMP-dependent signaling mechanisms of secretin receptor. Int J
Cancer. 127:43–54. 2010. View Article : Google Scholar
|
15
|
Ding WQ, Kuntz S, Böhmig M, Wiedenmann B
and Miller LJ: Dominant negative action of an abnormal secretin
receptor arising from mRNA missplicing in a gastrinoma.
Gastroenterology. 122:500–511. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mayor R, Casadomé L, Azuara D, Moreno V,
Clark SJ, Capellà G and Peinado MA: Long-range epigenetic silencing
at 2q14.2 affects most human colorectal cancers and may have
application as a non-invasive biomarker of disease. Br J Cancer.
100:1534–1539. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Devaney J, Stirzaker C, Qu W, Song JZ,
Statham AL, Patterson KI, Horvath LG, Tabor B, Coolen MW, Hulf T,
et al: Epigenetic deregulation across chromosome 2q14.2
differentiates normal from prostate cancer and provides a regional
panel of novel DNA methylation cancer biomarkers. Cancer Epidemiol
Biomarkers Prev. 20:148–159. 2011. View Article : Google Scholar
|
18
|
Stefansson OA, Jonasson JG, Olafsdottir K,
Hilmarsdottir H, Olafsdottir G, Esteller M, Johannsson OT and
Eyfjord JE: CpG island hypermethylation of BRCA1 and loss of pRb as
co-occurring events in basal/triple-negative breast cancer.
Epigenetics. 6:638–649. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hino R, Uozaki H, Murakami N, Ushiku T,
Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada
K, et al: Activation of DNA methyltransferase 1 by EBV latent
membrane protein 2A leads to promoter hypermethylation of PTEN gene
in gastric carcinoma. Cancer Res. 69:2766–2774. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sebova K, Zmetakova I, Bella V, Kajo K,
Stankovicova I, Kajabova V, Krivulcik T, Lasabova Z, Tomka M,
Galbavy S, et al: RASSF1A and CDH1 hypermethylation as potential
epimarkers in breast cancer. Cancer Biomark. 10:13–26.
2012.PubMed/NCBI
|
21
|
Mahajan K, Coppola D, Chen YA, Zhu W,
Lawrence HR, Lawrence NJ and Mahajan NP: Ack1 tyrosine kinase
activation correlates with pancreatic cancer progression. Am J
Pathol. 180:1386–1393. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Quan J, Yahata T, Adachi S, Yoshihara K
and Tanaka K: Identification of receptor tyrosine kinase, discoidin
domain receptor 1 (DDR1), as a potential biomarker for serous
ovarian cancer. Int J Mol Sci. 12:971–982. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Miyazawa Y, Uekita T, Ito Y, Seiki M,
Yamaguchi H and Sakai R: CDCP1 regulates the function of MT1-MMP
and invadopodia-mediated invasion of cancer cells. Mol Cancer Res.
11:628–637. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Díaz-García CV, Agudo-López A, Pérez C,
López-Martín JA, Rodríguez-Peralto JL, de Castro J, Cortijo A,
Martínez-Villanueva M, Iglesias L, García-Carbonero R, et al:
DICER1, DROSHA and miRNAs in patients with non-small cell lung
cancer: Implications for outcomes and histologic classification.
Carcinogenesis. 34:1031–1038. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bharadwaj S and Prasad GL: Tropomyosin-1,
a novel suppressor of cellular transformation is downregulated by
promoter methylation in cancer cells. Cancer Lett. 183:205–213.
2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wolff DW, Xie Y, Deng C, Gatalica Z, Yang
M, Wang B, Wang J, Lin MF, Abel PW and Tu Y: Epigenetic repression
of regulator of G-protein signaling 2 promotes androgen-independent
prostate cancer cell growth. Int J Cancer. 130:1521–1531. 2012.
View Article : Google Scholar
|
27
|
Rosenbaum DM, Rasmussen SG and Kobilka BK:
The structure and function of G-protein-coupled receptors. Nature.
459:356–363. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
O'Hayre M, Degese MS and Gutkind JS: Novel
insights into G protein and G protein-coupled receptor signaling in
cancer. Curr Opin Cell Biol. 27:126–135. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lappano R and Maggiolini M: G
protein-coupled receptors: Novel targets for drug discovery in
cancer. Nat Rev Drug Discov. 10:47–60. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Wülfing P, Kersting C, Tio J, Fischer RJ,
Wülfing C, Poremba C, Diallo R, Böcker W and Kiesel L:
Endothelin-1-, endothelin-A-, and endothelin-B-receptor expression
is correlated with vascular endothelial growth factor expression
and angiogenesis in breast cancer. Clin Cancer Res. 10:2393–2400.
2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Filardo EJ, Graeber CT, Quinn JA, Resnick
MB, Giri D, DeLellis RA, Steinhoff MM and Sabo E: Distribution of
GPR30, a seven membrane-spanning estrogen receptor, in primary
breast cancer and its association with clinicopathologic
determinants of tumor progression. Clin Cancer Res. 12:6359–6366.
2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pandey DP, Lappano R, Albanito L, Madeo A,
Maggiolini M and Picard D: Estrogenic GPR30 signalling induces
proliferation and migration of breast cancer cells through CTGF.
EMBO J. 28:523–532. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lagerström MC and Schiöth HB: Structural
diversity of G protein-coupled receptors and significance for drug
discovery. Nat Rev Drug Discov. 7:339–357. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Park SJ, Lee KP, Kang S, Chung HY, Bae YS,
Okajima F and Im DS: Lysophosphatidylethanolamine utilizes LPA(1)
and CD97 in MDA-MB-231 breast cancer cells. Cell Signal.
25:2147–2154. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Karpinski P, Ramsey D, Grzebieniak Z,
Sasiadek MM and Blin N: The CpG island methylator phenotype
correlates with long-range epigenetic silencing in colorectal
cancer. Mol Cancer Res. 6:585–591. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee M, Waser B, Reubi JC and Pellegata NS:
Secretin receptor promotes the proliferation of endocrine tumor
cells via the PI3K/ AKT pathway. Mol Endocrinol. 26:1394–1405.
2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Oft M, Peli J, Rudaz C, Schwarz H, Beug H
and Reichmann E: TGF-beta1 and Ha-Ras collaborate in modulating the
phenotypic plasticity and invasiveness of epithelial tumor cells.
Genes Dev. 10:2462–2477. 1996. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu J and Lin A: Role of JNK activation in
apoptosis: A double-edged sword. Cell Res. 15:36–42. 2005.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wu J, Xie N, Zhao X, Nice EC and Huang C:
Dissection of aberrant GPCR signaling in tumorigenesis - a systems
biology approach. Cancer Genomics Proteomics. 9:37–50.
2012.PubMed/NCBI
|
41
|
Chen Y, Chen L, Li JY, Mukaida N, Wang Q,
Yang C, Yin WJ, Zeng XH, Jin W and Shao ZM: ERβ and PEA3
co-activate IL-8 expression and promote the invasion of breast
cancer cells. Cancer Biol Ther. 11:497–511. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kim H, Choi JA, Park GS and Kim JH: BLT2
up-regulates interleukin-8 production and promotes the invasiveness
of breast cancer cells. PLoS One. 7:e491862012. View Article : Google Scholar : PubMed/NCBI
|