1
|
Chen W, Zheng R, Zeng H, Zhang S and He J:
Annual report on status of cancer in China, 2011. Chin J Cancer
Res. 27:2–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
de Ruijter AJ, van Gennip AH, Caron HN,
Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs):
Characterization of the classical HDAC family. Biochem J.
370:737–749. 2003. View Article : Google Scholar
|
4
|
Witt O, Deubzer HE, Milde T and Oehme I:
HDAC family: What are the cancer relevant targets? Cancer Lett.
277:8–21. 2009. View Article : Google Scholar
|
5
|
Hait NC, Avni D, Yamada A, Nagahashi M,
Aoyagi T, Aoki H, Dumur CI, Zelenko Z, Gallagher EJ, Leroith D, et
al: The phosphorylated prodrug FTY720 is a histone deacetylase
inhibitor that reactivates ERα expression and enhances hormonal
therapy for breast cancer. Oncogenesis. 4:e1562015. View Article : Google Scholar
|
6
|
Seicean A, Petrusel L, Seicean R, To C,
Seicean A and Street C: New targeted therapies in pancreatic
cancer. World J Gastroenterol. 21:6127–6145. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Eigl BJ, North S, Winquist E, Finch D,
Wood L, Sridhar SS, Powers J, Good J, Sharma M, Squire JA, et al: A
phase II study of the HDAC inhibitor SB939 in patients with
castration resistant prostate cancer: NCIC clinical trials group
study IND195. Invest New Drugs. 33:969–976. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang L, Liang Q, Shen K, Ma L, An N, Deng
W, Fei Z and Liu J: A novel class I histone deacetylase inhibitor,
I-7ab, induces apoptosis and arrests cell cycle progression in
human colorectal cancer cells. Biomed Pharmacother. 71:70–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bishayee K, Khuda-Bukhsh AR and Huh SO:
PLGA-loaded gold-nanoparticles precipitated with quercetin
downregulate HDAC-Akt activities controlling proliferation and
activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma
cells. Mol Cells. 38:518–527. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pai JT, Hsu CY, Hua KT, Yu SY, Huang CY,
Chen CN, Liao CH and Weng MS: NBM-T-BBX-OS01, semisynthesized from
osthole, induced G1 growth arrest through HDAC6 inhibition in lung
cancer cells. Molecules. 20:8000–8019. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bian J and Zhang L, Han Y, Wang C and
Zhang L: Histone deacetylase inhibitors: Potent anti-leukemic
agents. Curr Med Chem. 22:2065–2074. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu L, Yang J, Zhao L, Yu X, Wang L, Wang
F, Cai Y and Jin J: Expression of hMOF, but not HDAC4, is
responsible for the global histone H4K16 acetylation in gastric
carcinoma. Int J Oncol. 46:2535–2545. 2015.PubMed/NCBI
|
13
|
Dali-Youcef N, Froelich S, Moussallieh
F-M, Chibbaro S, Noël G, Namer IJ, Heikkinen S and Auwerx J: Gene
expression mapping of histone deacetylases and co-factors, and
correlation with survival time and 1H-HRMAS metabolomic profile in
human gliomas. Sci Rep. 5:90872015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Khan MA, Hussain A, Sundaram MK, Alalami
U, Gunasekera D, Ramesh L, Hamza A and Quraishi U:
(−)-Epigallocatechin-3-gallate reverses the expression of various
tumor-suppressor genes by inhibiting DNA methyltransferases and
histone deacetylases in human cervical cancer cells. Oncol Rep.
33:1976–1984. 2015.PubMed/NCBI
|
15
|
Gregoretti IV, Lee YM and Goodson HV:
Molecular evolution of the histone deacetylase family: Functional
implications of phylogenetic analysis. J Mol Biol. 338:17–31. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Oehme I, Deubzer HE, Wegener D, Pickert D,
Linke JP, Hero B, Kopp-Schneider A, Westermann F, Ulrich SM, von
Deimling A, et al: Histone deacetylase 8 in neuroblastoma
tumorigenesis. Clin Cancer Res. 15:91–99. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Marks P, Rifkind RA, Richon VM, Breslow R,
Miller T and Kelly WK: Histone deacetylases and cancer: Causes and
therapies. Nat Rev Cancer. 1:194–202. 2001. View Article : Google Scholar
|
18
|
Pandey R, Müller A, Napoli CA, Selinger
DA, Pikaard CS, Richards EJ, Bender J, Mount DW and Jorgensen RA:
Analysis of histone acetyltransferase and histone deacetylase
families of Arabidopsis thaliana suggests functional
diversification of chromatin modification among multicellular
eukaryotes. Nucleic Acids Res. 30:5036–5055. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Falkenberg KJ and Johnstone RW: Histone
deacetylases and their inhibitors in cancer, neurological diseases
and immune disorders. Nat Rev Drug Discov. 13:673–691. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Mottamal M, Zheng S, Huang TL and Wang G:
Histone deacetylase inhibitors in clinical studies as templates for
new anticancer agents. Molecules. 20:3898–3941. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chakrabarti A, Oehme I, Witt O, Oliveira
G, Sippl W, Romier C, Pierce RJ and Jung M: HDAC8: A multifaceted
target for therapeutic interventions. Trends Pharmacol Sci.
36:481–492. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu J, Du C, Lv Z, Ding C, Cheng J, Xie H,
Zhou L and Zheng S: The up-regulation of histone deacetylase 8
promotes proliferation and inhibits apoptosis in hepatocellular
carcinoma. Dig Dis Sci. 58:3545–3553. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vannini A, Volpari C, Filocamo G, Casavola
EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco
R, Gallinari P, et al: Crystal structure of a eukaryotic
zinc-dependent histone deacetylase, human HDAC8, complexed with a
hydroxamic acid inhibitor. Proc Natl Acad Sci USA. 101:15064–15069.
2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kang Y, Nian H, Rajendran P, Kim E,
Dashwood WM, Pinto JT, Boardman LA, Thibodeau SN, Limburg PJ, Löhr
CV, et al: HDAC8 and STAT3 repress BMF gene activity in colon
cancer cells. Cell Death Dis. 5:e14762014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nian H, Bisson WH, Dashwood WM, Pinto JT
and Dashwood RH: α-keto acid metabolites of organoselenium
compounds inhibit histone deacetylase activity in human colon
cancer cells. Carcinogenesis. 30:1416–1423. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sargent JM and Taylor CG: Appraisal of the
MTT assay as a rapid test of chemosensitivity in acute myeloid
leukaemia. Br J Cancer. 60:206–210. 1989. View Article : Google Scholar : PubMed/NCBI
|
27
|
van de Loosdrecht AA, Beelen RH,
Ossenkoppele GJ, Broekhoven MG and Langenhuijsen MM: A
tetrazolium-based colorimetric MTT assay to quantitate human
monocyte mediated cytotoxicity against leukemic cells from cell
lines and patients with acute myeloid leukemia. J Immunol Methods.
174:311–320. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Twentyman PR and Luscombe M: A study of
some variables in a tetrazolium dye (MTT) based assay for cell
growth and chemo-sensitivity. Br J Cancer. 56:279–285. 1987.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Tolosa L, Donato MT and Gómez-Lechón MJ:
General cytotoxicity assessment by means of the MTT assay. Methods
Mol Biol. 1250:333–348. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Zhang D, Wu K, Zhao Q, Nie Y and
Fan D: Long noncoding RNA MRUL promotes ABCB1 expression in
multidrug-resistant gastric cancer cell sublines. Mol Cell Biol.
34:3182–3193. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guzmán C, Bagga M, Kaur A, Westermarck J
and Abankwa D: ColonyArea: An ImageJ plugin to automatically
quantify colony formation in clonogenic assays. PLoS One.
9:e924442014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Feng X, Wang Y, Ma Z, Yang R, Liang S,
Zhang M, Song S, Li S, Liu G, Fan D, et al: MicroRNA-645,
up-regulated in human adencarcinoma of gastric esophageal junction,
inhibits apoptosis by targeting tumor suppressor IFIT2. BMC Cancer.
14:6332014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kennecke H, Yerushalmi R, Woods R, Cheang
MC, Voduc D, Speers CH, Nielsen TO and Gelmon K: Metastatic
behavior of breast cancer subtypes. J Clin Oncol. 28:3271–3277.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lassmann S, Shen Y, Jütting U, Wiehle P,
Walch A, Gitsch G, Hasenburg A and Werner M: Predictive value of
Aurora-A/STK15 expression for late stage epithelial ovarian cancer
patients treated by adjuvant chemotherapy. Clin Cancer Res.
13:4083–4091. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lakshmaiah KC, Jacob LA, Aparna S,
Lokanatha D and Saldanha SC: Epigenetic therapy of cancer with
histone deacetylase inhibitors. J Cancer Res Ther. 10:469–478.
2014.PubMed/NCBI
|
36
|
Wilmott JS, Colebatch AJ, Kakavand H,
Shang P, Carlino MS, Thompson JF, Long GV, Scolyer RA and Hersey P:
Expression of the class 1 histone deacetylases HDAC8 and 3 are
associated with improved survival of patients with metastatic
melanoma. Mod Pathol. 28:884–894. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tian Y, To KF, Lai P, Cheung YS, Wong VWS,
Chan HLY and Cheng ASL: Histone deacetylase 8 is a novel chromatin
modulator in NAFLD-associated hepatocarcinogenesis. Clin
Gastroenterol Hepatol. 13:2192015. View Article : Google Scholar
|
38
|
Balasubramanian S, Ramos J, Luo W,
Sirisawad M, Verner E and Buggy JJ: A novel histone deacetylase 8
(HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell
lymphomas. Leukemia. 22:1026–1034. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Matthews GM, Newbold A and Johnstone RW:
Intrinsic and extrinsic apoptotic pathway signaling as determinants
of histone deacetylase inhibitor antitumor activity. Adv Cancer
Res. 116:165–197. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Labi V, Grespi F, Baumgartner F and
Villunger A: Targeting the Bcl-2-regulated apoptosis pathway by BH3
mimetics: A breakthrough in anticancer therapy? Cell Death Differ.
15:977–987. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ginés A, Bystrup S, Ruiz de Porras V,
Guardia C, Musulén E, Martínez-Cardús A, Manzano JL, Layos L, Abad
A and Martínez-Balibrea E: PKM2 subcellular localization is
involved in oxaliplatin resistance acquisition in HT29 human
colorectal cancer cell lines. PLoS One. 10:e01238302015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Graab U, Hahn H and Fulda S:
Identification of a novel synthetic lethality of combined
inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma.
Oncotarget. 6:8722–8735. 2015. View Article : Google Scholar : PubMed/NCBI
|