The concept and controversy of retroperitoneal nerve dissection in pancreatic head carcinoma (Review)
- Authors:
- Xuan Wang
- Hongwei Zhang
- Taihong Wang
- Wan Yee Lau
- Xin Wang
- Jingfeng Sun
- Zhenhua Yuan
- Yewei Zhang
-
Affiliations: Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China, Department of Oncology, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China - Published online on: October 6, 2015 https://doi.org/10.3892/ijo.2015.3190
- Pages: 2017-2027
This article is mentioned in:
Abstract
Liebig C, Ayala G, Wilks JA, Berger DH and Albo D: Perineural invasion in cancer: A review of the literature. Cancer. 115:3379–3391. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alderton GK: Microenvironment: An exercise in restraint. Nat Rev Cancer. 14:4492014. View Article : Google Scholar : PubMed/NCBI | |
Bapat AA, Hostetter G, Von Hoff DD and Han H: Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 11:695–707. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yi SQ, Miwa K, Ohta T, Kayahara M, Kitagawa H, Tanaka A, Shimokawa T, Akita K and Tanaka S: Innervation of the pancreas from the perspective of perineural invasion of pancreatic cancer. Pancreas. 27:225–229. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cheng P, Jin G, Hu X, Shi M, Zhang Y, Liu R, Zhou Y, Shao C, Zheng J and Zhu M: Analysis of tumor-induced lymphangiogenesis and lymphatic vessel invasion of pancreatic carcinoma in the peripheral nerve plexus. Cancer Sci. 103:1756–1763. 2012. View Article : Google Scholar : PubMed/NCBI | |
Makino I, Kitagawa H, Ohta T, Nakagawara H, Tajima H, Ohnishi I, Takamura H, Tani T and Kayahara M: Nerve plexus invasion in pancreatic cancer: Spread patterns on histopathologic and embryological analyses. Pancreas. 37:358–365. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M and Petersen GM: Pancreatic cancer-associated diabetes mellitus: Prevalence and temporal association with diagnosis of cancer. Gastroenterology. 134:95–101. 2008. View Article : Google Scholar | |
Satija A, Spiegelman D, Giovannucci E and Hu FB: Type 2 diabetes and risk of cancer. BMJ. 350:g77072015. View Article : Google Scholar : PubMed/NCBI | |
Liao WC, Tu YK, Wu MS, Lin JT, Wang HP and Chien KL: Blood glucose concentration and risk of pancreatic cancer: Systematic review and dose-response meta-analysis. BMJ. 349:g73712015. View Article : Google Scholar : PubMed/NCBI | |
Pannala R, Basu A, Petersen GM and Chari ST: New-onset diabetes: A potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 10:88–95. 2009. View Article : Google Scholar : | |
Giovannucci E and Michaud D: The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology. 132:2208–2225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li J and Ma Q: Hyperglycemia promotes the perineural invasion in pancreatic cancer. Med Hypotheses. 71:386–389. 2008. View Article : Google Scholar : PubMed/NCBI | |
He S, Chen CH, Chernichenko N, He S, Bakst RL, Barajas F, Deborde S, Allen PJ, Vakiani E, Yu Z, et al: GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc Natl Acad Sci USA. 111:E2008–E2017. 2014. View Article : Google Scholar | |
Gao L, Bo H, Wang Y, Zhang J and Zhu M: Neurotrophic factor artemin promotes invasiveness and neurotrophic function of pancreatic adenocarcinoma in vivo and in vitro. Pancreas. 44:134–143. 2015. View Article : Google Scholar | |
Martínez-Bosch N, Fernández-Barrena MG, Moreno M, Ortiz-Zapater E, Munné-Collado J, Iglesias M, André S, Gabius HJ, Hwang RF, Poirier F, et al: Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Res. 74:3512–3524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang Z, Ma Q, Xu Q, Liu H, Duan W, Lei J, Ma J, Wang X, Lv S, et al: Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res. 20:4326–4338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yang H, Abel EV, Ney GM, Palmbos PL, Bednar F, Zhang Y, Leflein J, Waghray M, Owens S, et al: ATDC induces an invasive switch in KRAS-induced pancreatic tumorigenesis. Genes Dev. 29:171–183. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S, et al: Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 159:80–93. 2014. View Article : Google Scholar : PubMed/NCBI | |
Witz IP and Levy-Nissenbaum O: The tumor microenvironment in the post-PAGET era. Cancer Lett. 242:1–10. 2006. View Article : Google Scholar : PubMed/NCBI | |
Helm O, Mennrich R, Petrick D, Goebel L, Freitag-Wolf S, Röder C, Kalthoff H, Röcken C, Sipos B, Kabelitz D, et al: Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS One. 9:e943572014. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo M: Pancreatic cancer. N Engl J Med. 362:1605–1617. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gore J and Korc M: Pancreatic cancer stroma: Friend or foe? Cancer Cell. 25:711–712. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heinemann V, Reni M, Ychou M, Richel DJ, Macarulla T and Ducreux M: Tumour-stroma interactions in pancreatic ductal adenocarcinoma: Rationale and current evidence for new therapeutic strategies. Cancer Treat Rev. 40:118–128. 2014. View Article : Google Scholar | |
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI | |
Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25:719–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karademir S, Sökmen S, Terzi C, Sağol O, Özer E, Astarcioğlu H, Coker A and Astarcioğlu I: Tumor angiogenesis as a prognostic predictor in pancreatic cancer. J Hepatobiliary Pancreat Surg. 7:489–495. 2000. View Article : Google Scholar | |
Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC, Hostetter G, Harvey J and Taubman MB: Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res. 13:2870–2875. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wente MN, Keane MP, Burdick MD, Friess H, Büchler MW, Ceyhan GO, Reber HA, Strieter RM and Hines OJ: Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett. 241:221–227. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MR, Scudamore CL, Cereser B, Crnogorac-Jurcevic T, McDonald S, Elia G, et al: Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 27:123–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA and Vonderheide RH: Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67:9518–9527. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ and Vonderheide RH: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 21:822–835. 2012. View Article : Google Scholar : PubMed/NCBI | |
Greten TF: Myeloid-derived suppressor cells in pancreatic cancer: more than a hidden barrier for antitumour immunity? Gut. 63:1690–1691. 2014. View Article : Google Scholar : PubMed/NCBI | |
Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM, et al: Stromal biology and therapy in pancreatic cancer. Gut. 60:861–868. 2011. View Article : Google Scholar | |
Schlomann U, Koller G, Conrad C, Ferdous T, Golfi P, Garcia AM, Höfling S, Parsons M, Costa P, Soper R, et al: ADAM8 as a drug target in pancreatic cancer. Nat Commun. 6:61752015. View Article : Google Scholar : PubMed/NCBI | |
Kahlert C, Fiala M, Musso G, Halama N, Keim S, Mazzone M, Lasitschka F, Pecqueux M, Klupp F, Schmidt T, et al: Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer. Oncotarget. 5:12978–12989. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jacobs EJ, Newton CC, Silverman DT, Nogueira LM, Albanes D, Männistö S, Pollak M and Stolzenberg-Solomon RZ: Serum transforming growth factor-β1 and risk of pancreatic cancer in three prospective cohort studies. Cancer Causes Control. 25:1083–1091. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ and Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 1:313–323. 2007. View Article : Google Scholar | |
Bai X, Zhi X, Zhang Q, Liang F, Chen W, Liang C, Hu Q, Sun X, Zhuang Z and Liang T: Inhibition of protein phosphatase 2A sensitizes pancreatic cancer to chemotherapy by increasing drug perfusion via HIF-1α-VEGF mediated angiogenesis. Cancer Lett. 355:281–287. 2014. View Article : Google Scholar : PubMed/NCBI | |
Farrow B, Albo D and Berger DH: The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res. 149:319–328. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ryan DP, Hong TS and Bardeesy N: Pancreatic adenocarcinoma. N Engl J Med. 371:1039–1049. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bockhorn M, Uzunoglu FG, Adham M, Imrie C, Milicevic M, Sandberg AA, Asbun HJ, Bassi C, Büchler M, Charnley RM, et al; International Study Group of Pancreatic Surgery. Borderline resectable pancreatic cancer: A consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery. 155:977–988. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fouquet T, Germain A, Brunaud L, Bresler L and Ayav A: Is perineural invasion more accurate than other factors to predict early recurrence after pancreatoduodenectomy for pancreatic head adenocarcinoma? World J Surg. 38:2132–2137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kimura W and Makuuchi M: Suihi geka no youten to mouten. Bunkodo; Tokyo: 2009, (In Japanese). | |
Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H and Büchler MW: Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg. 91:586–594. 2004. View Article : Google Scholar : PubMed/NCBI | |
Weitz J, Rahbari N, Koch M and Büchler MW: The ‘artery first’ approach for resection of pancreatic head cancer. J Am Coll Surg. 210:e1–e4. 2010. View Article : Google Scholar : PubMed/NCBI | |
Verbeke CS, Leitch D, Menon KV, McMahon MJ, Guillou PJ and Anthoney A: Redefining the R1 resection in pancreatic cancer. Br J Surg. 93:1232–1237. 2006. View Article : Google Scholar : PubMed/NCBI | |
Esposito I, Kleeff J, Bergmann F, Reiser C, Herpel E, Friess H, Schirmacher P and Büchler MW: Most pancreatic cancer resections are R1 resections. Ann Surg Oncol. 15:1651–1660. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cameron JL, Riall TS, Coleman J and Belcher KA: One thousand consecutive pancreaticoduodenectomies. Ann Surg. 244:10–15. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schmidt CM, Powell ES, Yiannoutsos CT, Howard TJ, Wiebke EA, Wiesenauer CA, Baumgardner JA, Cummings OW, Jacobson LE, Broadie TA, et al: Pancreaticoduodenectomy: A 20-year experience in 516 patients. Arch Surg. 139:718–725; discussion 725–727. 2004. View Article : Google Scholar : PubMed/NCBI | |
Verbeke CS: Resection margins and R1 rates in pancreatic cancer - are we there yet? Histopathology. 52:787–796. 2008. View Article : Google Scholar | |
Gaedcke J, Gunawan B, Grade M, Szöke R, Liersch T, Becker H and Ghadimi BM: The mesopancreas is the primary site for R1 resection in pancreatic head cancer: Relevance for clinical trials. Langenbecks Arch Surg. 395:451–458. 2010. View Article : Google Scholar : | |
Agrawal MK, Thakur DS, Somashekar U, Chandrakar SK and Sharma D: Mesopancreas: Myth or reality? JOP. 11:230–233. 2010.PubMed/NCBI | |
Adham M and Singhirunnusorn J: Surgical technique and results of total mesopancreas excision (TMpE) in pancreatic tumors. Eur J Surg Oncol. 38:340–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gockel I, Domeyer M, Wolloscheck T, Konerding MA and Junginger T: Resection of the mesopancreas (RMP): A new surgical classification of a known anatomical space. World J Surg Oncol. 5:442007. View Article : Google Scholar : PubMed/NCBI | |
Bouassida M, Mighri MM, Chtourou MF and Sassi S, Touinsi H, Hajji H and Sassi S: Retroportal lamina or mesopancreas? Lessons learned by anatomical and histological study of thirty three cadaveric dissections. Int J Surg. 11:834–836. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dumitrascu T and Popescu I: Total mesopancreas excision in pancreatic head adenocarcinoma: The same impact as total mesorectal excision in rectal carcinoma? Comment on article “surgical technique and results of total mesopancreas excision in pancreatic tumours” by Adham M and Singhirunnusorn J, Eur J Surg Oncol, 2012. Eur J Surg Oncol. 38:725author reply 726. 2012. View Article : Google Scholar | |
Chowdappa R and Challa VR: Mesopancreas in pancreatic cancer: where do we stand - review of literature. Indian J Surg Oncol. 6:69–74. 2014. View Article : Google Scholar | |
Kawabata Y, Tanaka T, Nishi T, Monma H, Yano S and Tajima Y: Appraisal of a total meso-pancreatoduodenum excision with pancreaticoduodenectomy for pancreatic head carcinoma. Eur J Surg Oncol. 38:574–579. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jang JY, Kang MJ, Heo JS, Choi SH, Choi DW, Park SJ, Han SS, Yoon DS, Yu HC, Kang KJ, et al: A prospective randomized controlled study comparing outcomes of standard resection and extended resection, including dissection of the nerve plexus and various lymph nodes, in patients with pancreatic head cancer. Ann Surg. 259:656–664. 2014. View Article : Google Scholar | |
Nimura Y, Nagino M, Takao S, Takada T, Miyazaki K, Kawarada Y, Miyagawa S, Yamaguchi A, Ishiyama S, Takeda Y, et al: Standard versus extended lymphadenectomy in radical pancreatoduodenectomy for ductal adenocarcinoma of the head of the pancreas: Long-term results of a Japanese multicenter randomized controlled trial. J Hepatobiliary Pancreat Sci. 19:230–241. 2012. View Article : Google Scholar | |
Michalski CW, Kleeff J, Wente MN, Diener MK, Büchler MW and Friess H: Systematic review and meta-analysis of standard and extended lymphadenectomy in pancreaticoduodenectomy for pancreatic cancer. Br J Surg. 94:265–273. 2007. View Article : Google Scholar : PubMed/NCBI | |
Farnell MB, Pearson RK, Sarr MG, DiMagno EP, Burgart LJ, Dahl TR, Foster N and Sargent DJ; Pancreas Cancer Working Group. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. Surgery. 138:618–628; discussion 628–630. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee A, Chiu CH, Cho MWA, Gomersall CD, Lee KF, Cheung YS and Lai PB: Factors associated with failure of enhanced recovery protocol in patients undergoing major hepatobiliary and pancreatic surgery: A retrospective cohort study. BMJ Open. 4:e0053302014. View Article : Google Scholar : PubMed/NCBI | |
Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS and Jemal A: Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 64:252–271. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pfister DG: The just price of cancer drugs and the growing cost of cancer care: Oncologists need to be part of the solution. J Clin Oncol. 31:3487–3489. 2013. View Article : Google Scholar : PubMed/NCBI | |
Short MN, Aloia TA and Ho V: The influence of complications on the costs of complex cancer surgery. Cancer. 120:1035–1041. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sanford DE, Sanford AM, Fields RC, Hawkins WG, Strasberg SM and Linehan DC: Severe nutritional risk predicts decreased long-term survival in geriatric patients undergoing pancreaticoduodenectomy for benign disease. J Am Coll Surg. 219:1149–1156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A and Schnitzer MJ: Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. 26:10380–10386. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fenno L, Yizhar O and Deisseroth K: The development and application of optogenetics. Annu Rev Neurosci. 34:389–412. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E and Gottschalk A: Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 15:2279–2284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT and Herlitze S: Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA. 102:17816–17821. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Wang LP, Boyden ES and Deisseroth K: Channelrhodopsin-2 and optical control of excitable cells. Nat Methods. 3:785–792. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH and Moore CI: Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc. 5:247–254. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT, Stern P, Bronson RT, Graybiel AM, Desimone R and Boyden ES: Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron. 62:191–198. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yizhar O, Fenno LE, Davidson TJ, Mogri M and Deisseroth K: Optogenetics in neural systems. Neuron. 71:9–34. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K and de Lecea L: Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 450:420–424. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hung J and Colicos MA: Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS One. 3:e36922008. View Article : Google Scholar | |
Adelsberger H, Grienberger C, Stroh A and Konnerth A: In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber. Cold Spring Harbor Protocols. 2014:pdb. prot084145. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yue J, Ai M, Ji Z, Liu Z, Cao X and Li L: Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord. Spine. 39:E865–E869. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fenno LE and Deisseroth K: Optogenetic tools for control of neural activity. Optical Imaging of Neocortical Dynamics. Springer; pp. 73–86. 2014, View Article : Google Scholar |