VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review)
Corrigendum in: /10.3892/ijo.2016.3636
- Authors:
- Samanta Taurone
- Filippo Galli
- Alberto Signore
- Enzo Agostinelli
- Rudi A.J.O. Dierckx
- Antonio Minni
- Marcella Pucci
- Marco Artico
-
Affiliations: IRCCS-G.B. Bietti Foundation, Rome, Italy, Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, ‘Sapienza’ University, Rome, Italy, Department of Biochemical Sciences ‘A. Rossi Fanelli’, ‘Sapienza’ University, Rome, Italy, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, Department of Sensory Organs, ‘Sapienza’ University, Rome, Italy - Published online on: June 1, 2016 https://doi.org/10.3892/ijo.2016.3553
- Pages: 437-447
This article is mentioned in:
Abstract
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar | |
Folkman J: Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov. 6:273–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ellis LM, Liu W and Wilson M: Down-regulation of vascular endothelial growth factor in human colon carcinoma cell lines by antisense transfection decreases endothelial cell proliferation. Surgery. 120:871–878. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gerber HP, Kowalski J, Sherman D, Eberhard DA and Ferrara N: Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 60:6253–6258. 2000.PubMed/NCBI | |
Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth ‘in vivo’. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI | |
Klohs WD and Hamby JM: Antiangiogenic agents. Curr Opin Biotechnol. 10:544–549. 1999. View Article : Google Scholar : PubMed/NCBI | |
Prewett M, Huber J, Li Y, Santiago A, O'Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, et al: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 59:5209–5218. 1999.PubMed/NCBI | |
Ferrara N and Davis-Smyth T: The biology of vascular endothelial growth factor. Endocr Rev. 18:4–25. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sato Y, Kanno S, Oda N, Abe M, Ito M, Shitara K and Shibuya M: Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Ann NY Acad Sci. 902:201–205. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N: The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS. 94:209–231. 2005. | |
Tang RF, Itakura J, Aikawa T, Matsuda K, Fujii H, Korc M and Matsumoto Y: Overexpression of lymphangiogenic growth factor VEGF-C in human pancreatic cancer. Pancreas. 22:285–292. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rydén L, Linderholm B, Nielsen NH, Emdin S, Jönsson PE and Landberg G: Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res Treat. 82:147–154. 2003. View Article : Google Scholar | |
Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, Brambilla C and Brambilla E: Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): Correlation with angiogenesis and survival. J Pathol. 188:369–377. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, Blaskovich MA, Baldini L, Coppola D, Hamilton AD, et al: Inhibiting angiogenesis and tumorigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene. 24:4701–4709. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O'Reilly T, et al: PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60:2178–2189. 2000.PubMed/NCBI | |
Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Curwen JO, Hennequin LF, Thomas AP, Stokes ES, Curry B, Richmond GH, et al: ZD4190: An orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res. 60:970–975. 2000.PubMed/NCBI | |
Ferrara N: Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev. 25:581–611. 2004. View Article : Google Scholar : PubMed/NCBI | |
El-Mousawi M, Tchistiakova L, Yurchenko L, Pietrzynski G, Moreno M, Stanimirovic D, Ahmad D and Alakhov V: A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library. J Biol Chem. 278:46681–46691. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves M, Estieu-Gionnet K, Berthelot T, Laïn G, Bayle M, Canron X, Betz N, Bikfalvi A and Déléris G: Design, synthesis, and evaluation of original carriers for targeting vascular endothelial growth factor receptor interactions. Pharm Res. 22:1411–1421. 2005. View Article : Google Scholar : PubMed/NCBI | |
Failla CM, Odorisio T, Cianfarani F, Schietroma C, Puddu P and Zambruno G: Placenta growth factor is induced in human keratinocytes during wound healing. J Invest Dermatol. 115:388–395. 2000. View Article : Google Scholar : PubMed/NCBI | |
Green CJ, Lichtlen P, Huynh NT, Yanovsky M, Laderoute KR, Schaffner W and Murphy BJ: Placenta growth factor gene expression is induced by hypoxia in fibroblasts: A central role for metal transcription factor-1. Cancer Res. 61:2696–2703. 2001.PubMed/NCBI | |
Larcher F, Franco M, Bolontrade M, Rodriguez-Puebla M, Casanova L, Navarro M, Yancopoulos G, Jorcano JL and Conti CJ: Modulation of the angiogenesis response through Ha-ras control, placenta growth factor, and angiopoietin expression in mouse skin carcinogenesis. Mol Carcinog. 37:83–90. 2003. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P, De Smet F, Loges S and Mazzone M: Branching morphogenesis and antiangiogenesis candidates: Tip cells lead the way. Nat Rev Clin Oncol. 6:315–326. 2009. View Article : Google Scholar | |
Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P and Young PP: VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 20:1495–1497. 2006. View Article : Google Scholar | |
Hicklin DJ and Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 23:1011–1027. 2005. View Article : Google Scholar | |
Podar K and Anderson KC: The pathophysiologic role of VEGF in hematologic malignancies: Therapeutic implications. Blood. 105:1383–1395. 2005. View Article : Google Scholar | |
Youssoufian H, Hicklin DJ and Rowinsky EK: Review: Monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin Cancer Res. 13:S5544–S5548. 2007. View Article : Google Scholar | |
Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH and Melillo G: Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood. 107:2705–2712. 2006. View Article : Google Scholar | |
Waldner MJ, Wirtz S, Jefremow A, Warntjen M, Neufert C, Atreya R, Becker C, Weigmann B, Vieth M, Rose-John S, et al: VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J Exp Med. 207:2855–2868. 2010. View Article : Google Scholar : PubMed/NCBI | |
Albuquerque RJC, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, et al: Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 15:1023–1030. 2009. View Article : Google Scholar : PubMed/NCBI | |
Becker J, Pavlakovic H, Ludewig F, Wilting F, Weich HA, Albuquerque R, Ambati J and Wilting J: Neuroblastoma progression correlates with downregulation of the lymphangiogenesis inhibitor sVEGFR-2. Clin Cancer Res. 16:1431–1441. 2010. View Article : Google Scholar : PubMed/NCBI | |
Petrova TV, Bono P, Holnthoner W, Chesnes J, Pytowski B, Sihto H, Laakkonen P, Heikkilä P, Joensuu H and Alitalo K: VEGFR-3 expression is restricted to blood and lymphatic vessels in solid tumors. Cancer Cell. 13:554–556. 2008. View Article : Google Scholar : PubMed/NCBI | |
Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, et al: Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res. 67:593–599. 2007. View Article : Google Scholar : PubMed/NCBI | |
He Y, Rajantie I, Ilmonen M, Makinen T, Karkkainen MJ, Haiko P, Salven P and Alitalo K: Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res. 64:3737–3740. 2004. View Article : Google Scholar : PubMed/NCBI | |
Achen MG and Stacker SA: Targeting tumor stroma. Curr Cancer Drug Targets. 8:4462008. View Article : Google Scholar : PubMed/NCBI | |
He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T and Alitalo K: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 65:4739–4746. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gerber HP and Ferrara N: Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 65:671–680. 2005.PubMed/NCBI | |
Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R and Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, Delozier T, Sohn JH, Provencher L, Puglisi F, et al: Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 28:3239–3247. 2010. View Article : Google Scholar : PubMed/NCBI | |
Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, Perez EA, Yardley DA, Chan SY, Zhou X, et al: RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 29:1252–1260. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D and Davidson NE: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 357:2666–2676. 2007. View Article : Google Scholar : PubMed/NCBI | |
Valachis A, Polyzos NP, Patsopoulos NA, Georgoulias V, Mavroudis D and Mauri D: Bevacizumab in metastatic breast cancer: A meta-analysis of randomized controlled trials. Breast Cancer Res Treat. 122:1–7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pivot X, Schneeweiss A, Verma S, Thomssen C, Passos-Coelho JL, Benedetti G, Ciruelos E, von Moos R, Chang HT, Duenne AA, et al: Efficacy and safety of bevacizumab in combination with docetaxel for the first-line treatment of elderly patients with locally recurrent or metastatic breast cancer: Results from AVADO. Eur J Cancer. 47:2387–2395. 2011. View Article : Google Scholar | |
Vach W, Høilund-Carlsen PF, Fischer BM, Gerke O and Weber W: How to study optimal timing of PET/CT for monitoring of cancer treatment. Am J Nucl Med Mol Imaging. 1:54–62. 2011.PubMed/NCBI | |
Rakheja R, Ciarallo A, Alabed YZ and Hickeson M: Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT. Am J Nucl Med Mol Imaging. 1:29–35. 2011. | |
Eary JF, Hawkins DS, Rodler ET and Conrad EUI III: (18)F-FDG PET in sarcoma treatment response imaging. Am J Nucl Med Mol Imaging. 1:47–53. 2011.PubMed/NCBI | |
Iagaru A: 18F-FDG PET/CT: Timing for evaluation of response to therapy remains a clinical challenge. Am J Nucl Med Mol Imaging. 1:63–64. 2011. | |
Mendel DB, Schreck RE, West DC, Li G, Strawn LM, Tanciongco SS, Vasile S, Shawver LK and Cherrington JM: The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res. 6:4848–4858. 2000. | |
Laird AD, Vajkoczy P, Shawver LK, Thurnher A, Liang C, Mohammadi M, Schlessinger J, Ullrich A, Hubbard SR, Blake RA, et al: SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 60:4152–4160. 2000.PubMed/NCBI | |
Drevs J, Hofmann I, Hugenschmidt H, Wittig C, Madjar H, Müller M, Wood J, Martiny-Baron G, Unger C and Marmé D: Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 60:4819–4824. 2000.PubMed/NCBI | |
Davidoff AM, Leary MA, Ng CY and Vanin EF: Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg. 36:30–36. 2001. View Article : Google Scholar : PubMed/NCBI | |
Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P and Kerbel RS: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 105:R15–R24. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, et al: Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60:5565–5570. 2000. | |
Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK and Suit HD: Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res. 61:39–44. 2001.PubMed/NCBI | |
Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med. 7:987–989. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N and Jain RK: Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA. 93:14765–14770. 1996. View Article : Google Scholar : PubMed/NCBI | |
Pham CD, Roberts TP, van Bruggen N, Melnyk O, Mann J, Ferrara N, Cohen RL and Brasch RC: Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest. 16:225–230. 1998. View Article : Google Scholar : PubMed/NCBI | |
Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, et al: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 10:145–147. 2004. View Article : Google Scholar | |
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Escudier B, Bellmunt J, Négrier S, Bajetta E, Melichar B, Bracarda S, Ravaud A, Golding S, Jethwa S and Sneller V: Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival. J Clin Oncol. 28:2144–2150. 2010. View Article : Google Scholar : PubMed/NCBI | |
Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WKA, Paleologos N, Nicholas MK, Jensen R, et al: Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 27:4733–4740. 2009. View Article : Google Scholar | |
Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, et al: Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 27:740–745. 2009. View Article : Google Scholar : | |
Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Ou SS, Archer L, Atkins JN, Picus J, Czaykowski P, et al: Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 26:5422–5428. 2008. View Article : Google Scholar | |
Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX and Rosenberg SA: A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 349:427–434. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Meter ME and Kim ES: Bevacizumab: Current updates in treatment. Curr Opin Oncol. 22:586–591. 2010. View Article : Google Scholar | |
Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, et al: Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA. 108:3749–3754. 2011. View Article : Google Scholar : PubMed/NCBI | |
Artico M, Cervoni L, Celli P, Salvati M and Palma L: Supratentorial glioblastoma in children: A series of 27 surgically treated cases. Childs Nerv Syst. 9:7–9. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bruns CJ, Shrader M, Harbison MT, Portera C, Solorzano CC, Jauch KW, Hicklin DJ, Radinsky R and Ellis LM: Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer. 102:101–108. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shaheen RM, Tseng WW, Vellagas R, Liu W, Ahmad SA, Jung YD, Reinmuth N, Drazan KE, Bucana CD, Hicklin DJ, et al: Effects of an antibody to vascular endothelial growth factor receptor-2 on survival, tumor vascularity, and apoptosis in a murine model of colon carcinomatosis. Int J Oncol. 18:221–226. 2001. | |
Spratlin J: Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. Curr Oncol Rep. 13:97–102. 2011. View Article : Google Scholar : PubMed/NCBI | |
Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, et al: Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet. 368:1329–1338. 2006. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Michaelson MD, Rosenberg J, Bukowski RM, Curti BD, George DJ, Hudes GR, Redman BG, Margolin KA and Wilding G: Sunitinib efficacy against advanced renal cell carcinoma. J Urol. 178:1883–1887. 2007. View Article : Google Scholar : PubMed/NCBI | |
Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, et al; TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 356:125–134. 2007. View Article : Google Scholar : PubMed/NCBI | |
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gruber BL, Marchese MJ and Kew R: Angiogenic factors stimulate mast-cell migration. Blood. 86:2488–2493. 1995.PubMed/NCBI | |
Thomas AL, Morgan B, Drevs J, Jivan A, Buchert M, Horsfield M, et al: Pharmacodynamic results using dynamic contrast enhanced magnetic resonance imaging of 2 Phase 1 studies of the VEGF inhibitor PTK787/ZK 222584 in patients with liver metastases from colorectal cancer. Proc ASCO. 20:2792001. | |
Jain RK, Duda DG, Clark JW and Loeffler JS: Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 3:24–40. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burris H III and Rocha-Lima C: New therapeutic directions for advanced pancreatic cancer: Targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist. 13:289–298. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bergers G and Hanahan D: Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603. 2008. View Article : Google Scholar | |
Ellis LM and Hicklin DJ: Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clin Cancer Res. 14:6371–6375. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kerbel RS: Tumor angiogenesis. N Engl J Med. 358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F and Ferrara N: Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat. 11:219–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R and Harris AL: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57:963–969. 1997.PubMed/NCBI | |
Christofori G, Naik P and Hanahan D: Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol. 9:1760–1770. 1995.PubMed/NCBI | |
Inoue M, Hager JH, Ferrara N, Gerber HP and Hanahan D: VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell. 1:193–202. 2002. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA, Laakkonen P, Bernasconi M, Bergers G, Ruoslahti E and Hanahan D: Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell. 4:393–403. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bergers G, Javaherian K, Lo KM, Folkman J and Hanahan D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 284:808–812. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, et al: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2:737–744. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bergers G, Song S, Meyer-Morse N, Bergsland E and Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 111:1287–1295. 2003. View Article : Google Scholar : | |
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hillan KJ: The role of VEGF expression in response to bevacizumab plus capcitabine in metastatic breast cancer (MBC). J Clin Oncol. 21:S2842003. | |
Gobbi G, Mirandola P, Micheloni C, Solenghi E, Sponzilli I, Artico M, Soda G, Zanelli G, Pelusi G, Fiorini T, et al: Expression of HLA class I antigen and proteasome subunits LMP-2 and LMP-10 in primary vs. metastatic breast carcinoma lesions. Int J Oncol. 25:1625–1629. 2004.PubMed/NCBI | |
Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, Kabbinavar F, Holden SN, Novotny WF, Frantz GD, et al: Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol. 24:217–227. 2006. View Article : Google Scholar | |
Nagengast WB, de Korte MA, Oude Munnink TH, Timmer-Bosscha H, den Dunnen WF, Hollema H, de Jong JR, Jensen MR, Quadt C, Garcia-Echeverria C, et al: 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. J Nucl Med. 51:761–767. 2010. View Article : Google Scholar : PubMed/NCBI | |
Christoforidis JB, Carlton MM, Knopp MV and Hinkle GH: PET/CT imaging of I-124-radiolabeled bevacizumab and ranibizumab after intravitreal injection in a rabbit model. Invest Ophthalmol Vis Sci. 52:5899–5903. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nayak TK, Garmestani K, Baidoo KE, Milenic DE and Brechbiel MW: PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int J Cancer. 128:920–926. 2011. View Article : Google Scholar | |
Paudyal B, Paudyal P, Oriuchi N, Hanaoka H, Tominaga H and Endo K: Positron emission tomography imaging and biodistribution of vascular endothelial growth factor with 64Cu-labeled bevacizumab in colorectal cancer xenografts. Cancer Sci. 102:117–121. 2011. View Article : Google Scholar | |
Nagengast WB, Hooge MN, van Straten EM, Kruijff S, Brouwers AH, den Dunnen WF, de Jong JR, Hollema H, Dierckx RA, Mulder NH, et al: VEGF-SPECT with 111In-bevacizumab in stage III/IV melanoma patients. Eur J Cancer. 47:1595–1602. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xu JS, Sanders VM, Letson AD, Roberts CJ and Xu RX: Multifunctional microbubbles for image-guided anti-vascular endothelial growth factor therapy. J Biomed Opt1. 5:0305152010. View Article : Google Scholar | |
Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB, Ntziachristos V, Hollema H, Herek JL, Schröder CP, Kosterink JG, Lub-de Hoog MN and de Vries EG: Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med. 52:1778–1785. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, Brouwers AH, van Dongen GA, Perk LR and Lub-de Hooge MN: In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med. 48:1313–1319. 2007. View Article : Google Scholar | |
Helisch A, Förster GJ, Reber H, Buchholz HG, Arnold R, Göke B, Weber MM, Wiedenmann B, Pauwels S, Haus U, et al: Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 31:1386–1392. 2004. View Article : Google Scholar : PubMed/NCBI | |
Scheer MG, Stollman TH, Boerman OC, Verrijp K, Sweep FC, Leenders WP, Ruers TJ and Oyen WJ: Imaging liver metastases of colorectal cancer patients with radiolabelled bevacizumab: Lack of correlation with VEGF-A expression. Eur J Cancer. 44:1835–1840. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vogl G, Bartel H, Dietze O and Hauser-Kronberger C: HER2 is unlikely to be involved in directly regulating angiogenesis in human breast cancer. Appl Immunohistochem Mol Morphol. 14:138–145. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kostopoulos I, Arapantoni-Dadioti P, Gogas H, Papadopoulos S, Malamou-Mitsi V, Scopa CD, Markaki S, Karagianni E, Kyriakou V, Margariti A, et al: Evaluation of the prognostic value of HER-2 and VEGF in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Breast Cancer Res Treat. 96:251–261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Tamimi RM, Collins LC, Schnitt SJ, Gilmore HL, Connolly JL and Colditz GA: The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: Results from the Nurses' Health Study. Breast Cancer Res Treat. 129:175–184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oosting SF, Brouwers AH, Van Es SC, Nagengast WB, Oude Munnink TH, Lub-de Hooge MN, Hollema H, de Jong JR, de Jong IJ, de Haas S, et al: 89Zr-bevacizumab PET imaging in metastatic renal cell carcinoma patients before and during antiangiogenic treatment. J Clin Oncol. 30(Suppl): 105812012. | |
Bluff JE, Menakuru SR, Cross SS, Higham SE, Balasubramanian SP, Brown NJ, Reed MW and Staton CA: Angiogenesis is associated with the onset of hyperplasia in human ductal breast disease. Br J Cancer. 101:666–672. 2009. View Article : Google Scholar : PubMed/NCBI | |
Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, Huijgens PC and van Dongen GA: Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging. 33:1337–1345. 2006. View Article : Google Scholar : PubMed/NCBI | |
Herzog H, Tellmann L, Scholten B, Coenen HH and Qaim SM: PET imaging problems with the non-standard positron emitters Yttrium-86 and Iodine-124. Q J Nucl Med Mol Imaging. 52:159–165. 2008. | |
Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F and Bartenstein P: PET imaging with yttrium-86: Comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging. 30:716–720. 2003. View Article : Google Scholar : PubMed/NCBI | |
Palm S, Enmon RM Jr, Matei C, Kolbert KS, Xu S, Zanzonico PB, Finn RL, Koutcher JA, Larson SM and Sgouros G: Pharmacokinetics and biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: Correlative MicroPET and MRI. J Nucl Med. 44:1148–1155. 2003.PubMed/NCBI | |
O'Connor MK, Li H, Rhodes DJ, Hruska CB, Clancy CB and Vetter RJ: Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast. Med Phys. 37:6187–6198. 2010. View Article : Google Scholar | |
De Jong JR, Warnders FJ, Nagengast WB, Dierckx RAJO, Hospers GAP, Brouwers AH, De Vries EGE and De Hooge MN: Radiation dosimetry of 111In-bevacizumab for VEGF-SPECT in melanoma patients. Eur J Nucl Med Mol Imaging. 37(Suppl): S477. 2010. | |
Börjesson PK, Jauw YW, de Bree R, Roos JC, Castelijns JA, Leemans CR, van Dongen GA and Boellaard R: Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. J Nucl Med. 50:1828–1836. 2009. View Article : Google Scholar : PubMed/NCBI | |
Murano T, Minamimoto R, Senda M, Uno K, Jinnouchi S, Fukuda H, Iinuma T, Tsukamoto E, Terauchi T, Yoshida T, et al: Radiation exposure and risk-benefit analysis in cancer screening using FDG-PET: Results of a Japanese nationwide survey. Ann Nucl Med. 25:657–666. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, van Dam GM, van der Meulen SB, de Jong JR, Bart J, et al: 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 54:1014–1018. 2013. View Article : Google Scholar : PubMed/NCBI | |
Collingridge DR, Carroll VA, Glaser M, Aboagye EO, Osman S, Hutchinson OC, Barthel H, Luthra SK, Brady F, Bicknell R, et al: The development of [(124)I]iodinated-VG76e: A novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res. 62:5912–5919. 2002.PubMed/NCBI | |
Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G, et al; European Organisation for Research and Treatment of Cancer Biological Therapeutic Development Group. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: Implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst. 94:1484–1493. 2002. View Article : Google Scholar | |
Chan C, Sandhu J, Guha A, Scollard DA, Wang J, Chen P, Bai K, Lee L and Reilly RM: A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for (111)In for imaging tumor angiogenesis. J Nucl Med. 46:1745–1752. 2005.PubMed/NCBI | |
Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG and Backer JM: Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med. 13:504–509. 2007. View Article : Google Scholar | |
Blankenberg FG, Backer MV, Levashova Z, Patel V and Backer JM: In vivo tumor angiogenesis imaging with site-specific labeled (99m)Tc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging. 33:841–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Cai W, Chen K, Li ZB, Kashefi A, He L and Chen X: A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging. 34:2001–2010. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, Vogel H, Hou LC, Tse V, Rosenblum MG, et al: Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med. 48:445–454. 2007.PubMed/NCBI | |
Cai W and Chen X: Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci. 12:4267–4279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Backer MV and Backer JM: Imaging key biomarkers of tumor angiogenesis. Theranostics. 2:502–515. 2012. View Article : Google Scholar : PubMed/NCBI |