1
|
Yang H, Testa JR and Carbone M:
Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr
Treat Options Oncol. 9:147–157. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Carbone M, Kratzke RA and Testa JR: The
pathogenesis of mesothelioma. Semin Oncol. 29:2–17. 2002.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Travis WD, Brambilla E, Burke AP, Marx A
and Nicholson AG: WHO Classification of Tumours of the Lung,
Pleura, Thymus and Heart. WHO Classification of Tumours. 7. 4th
edition. IARC Press; Lyon: 2015
|
4
|
Robinson BW and Lake RA: Advances in
malignant mesothelioma. N Engl J Med. 353:1591–1603. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Robinson BW, Musk AW and Lake RA:
Malignant mesothelioma. Lancet. 366:397–408. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Becklake MR, Bagatin E and Neder JA:
Asbestos-related diseases of the lungs and pleura: Uses, trends and
management over the last century. Int J Tuberc Lung Dis.
11:356–369. 2007.PubMed/NCBI
|
7
|
Vogelzang NJ, Rusthoven JJ, Symanowski J,
Denham C, Kaukel E, Ruffie P, Gatzemeier U, Boyer M, Emri S,
Manegold C, et al: Phase III study of pemetrexed in combination
with cisplatin versus cisplatin alone in patients with malignant
pleural mesothelioma. J Clin Oncol. 21:2636–2644. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zucali PA, De Vincenzo F, Simonelli M and
Santoro A: Future developments in the management of malignant
pleural mesothelioma. Expert Rev Anticancer Ther. 9:453–467. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kato T, Wada H, Patel P, Hu S, Lee D,
Hirohashi K, Nakajima T, Kaji M, Kaga K, Matsui Y, et al:
Overexpression of KIF23 predicts clinical outcome in primary lung
cancer patients. Lung Cancer. 92:53–61. 2016. View Article : Google Scholar
|
10
|
NCBI. Gene. http://www.ncbi.nlm.nih.gov/gene.
|
11
|
Science WIo. GeneCards. v4.0 Build
17http://www.genecards.org/.
|
12
|
Schmidt E: GenomeRNAi. 2013, http://genomernai.dkfz.de/GenomeRNAi//.
|
13
|
Research LIfC. CTDatabase. http://www.cta.lncc.br/.
|
14
|
Sobin LH, Gospodarowicz MK and Wittekind
C: Union for International Cancer Control (UICC), TNM
Classification of Malignant Tumours. 7th edition. Wiley-Blackwell;
New York: 2009
|
15
|
Nakajima T, Anayama T, Koike T, Waddell T,
Keshavjee S, Kimura H, Yoshino I and Yasufuku K: Simultaneous
isolation of total RNA, DNA, and protein using samples obtained by
EBUS-TBNA. J Bronchology Interv Pulmonol. 18:301–305. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Nakajima T, Zamel R, Anayama T, Kimura H,
Yoshino I, Keshavjee S and Yasufuku K: Ribonucleic acid microarray
analysis from lymph node samples obtained by endobronchial
ultrasonography-guided transbronchial needle aspiration. Ann Thorac
Surg. 94:2097–2101. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rizzardi AE, Johnson AT, Vogel RI,
Pambuccian SE, Henriksen J, Skubitz AP, Metzger GJ and Schmechel
SC: Quantitative comparison of immunohistochemical staining
measured by digital image analysis versus pathologist visual
scoring. Diagn Pathol. 7:422012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nagashio R, Sato Y, Jiang SX, Ryuge S,
Kodera Y, Maeda T and Nakajima T: Detection of tumor-specific
autoantibodies in sera of patients with lung cancer. Lung Cancer.
62:364–373. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nagashio R, Sato Y, Matsumoto T, Kageyama
T, Satoh Y, Shinichiro R, Masuda N, Goshima N, Jiang SX and Okayasu
I: Expression of RACK1 is a novel biomarker in pulmonary
adenocarcinomas. Lung Cancer. 69:54–59. 2010. View Article : Google Scholar
|
20
|
Mayer TU, Kapoor TM, Haggarty SJ, King RW,
Schreiber SL and Mitchison TJ: Small molecule inhibitor of mitotic
spindle bipolarity identified in a phenotype-based screen. Science.
286:971–974. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kapoor TM, Mayer TU, Coughlin ML and
Mitchison TJ: Probing spindle assembly mechanisms with monastrol, a
small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol.
150:975–988. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Takahashi S, Fusaki N, Ohta S, Iwahori Y,
Iizuka Y, Inagawa K, Kawakami Y, Yoshida K and Toda M:
Downregulation of KIF23 suppresses glioma proliferation. J
Neurooncol. 106:519–529. 2012. View Article : Google Scholar
|
23
|
Zhu C, Bossy-Wetzel E and Jiang W:
Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is
essential for midbody formation and completion of cytokinesis in
human cells. Biochem J. 389:373–381. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu X, Zhou T, Kuriyama R and Erikson RL:
Molecular interactions of Polo-like-kinase 1 with the mitotic
kinesin-like protein CHO1/MKLP-1. J Cell Sci. 117:3233–3246. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kawata E, Ashihara E, Nakagawa Y, Kiuchi
T, Ogura M, Yao H, Sakai K, Tanaka R, Nagao R, Yokota A, et al: A
combination of a DNA-chimera siRNA against PLK-1 and zoledronic
acid suppresses the growth of malignant mesothelioma cells in
vitro. Cancer Lett. 294:245–253. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Linton A, Cheng YY, Griggs K, Kirschner
MB, Gattani S, Srikaran S, Chuan-Hao Kao S, McCaughan BC, Klebe S,
van Zandwijk N, et al: An RNAi-based screen reveals PLK1, CDK1 and
NDC80 as potential therapeutic targets in malignant pleural
mesothelioma. Br J Cancer. 110:510–519. 2014. View Article : Google Scholar
|
27
|
Le Guellec R, Paris J, Couturier A, Roghi
C and Philippe M: Cloning by differential screening of a Xenopus
cDNA that encodes a kinesin-related protein. Mol Cell Biol.
11:3395–3398. 1991. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sawin KE, LeGuellec K, Philippe M and
Mitchison TJ: Mitotic spindle organization by a plus-end-directed
microtubule motor. Nature. 359:540–543. 1992. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sawin KE and Mitchison TJ: Mutations in
the kinesin-like protein Eg5 disrupting localization to the mitotic
spindle. Proc Natl Acad Sci USA. 92:4289–4293. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Blangy A, Lane HA, d'Hérin P, Harper M,
Kress M and Nigg EA: Phosphorylation by p34cdc2 regulates spindle
association of human Eg5, a kinesin-related motor essential for
bipolar spindle formation in vivo. Cell. 83:1159–1169. 1995.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Martens-de Kemp SR, Nagel R, Stigter-van
Walsum M, van der Meulen IH, van Beusechem VW, Braakhuis BJ and
Brakenhoff RH: Functional genetic screens identify genes essential
for tumor cell survival in head and neck and lung cancer. Clin
Cancer Res. 19:1994–2003. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ding S, Xing N, Lu J, Zhang H, Nishizawa
K, Liu S, Yuan X, Qin Y, Liu Y, Ogawa O, et al: Overexpression of
Eg5 predicts unfavorable prognosis in non-muscle invasive bladder
urothelial carcinoma. Int J Urol. 18:432–438. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sun D, Lu J, Ding K, Bi D, Niu Z, Cao Q,
Zhang J and Ding S: The expression of Eg5 predicts a poor outcome
for patients with renal cell carcinoma. Med Oncol. 30:4762013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Vijapurkar U, Wang W and Herbst R:
Potentiation of kinesin spindle protein inhibitor-induced cell
death by modulation of mitochondrial and death receptor apoptotic
pathways. Cancer Res. 67:237–245. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Garcia-Saez I, DeBonis S, Lopez R, Trucco
F, Rousseau B, Thuéry P and Kozielski F: Structure of human Eg5 in
complex with a new monastrol-based inhibitor bound in the R
configuration. J Biol Chem. 282:9740–9747. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Luo L, Parrish CA, Nevins N, McNulty DE,
Chaudhari AM, Carson JD, Sudakin V, Shaw AN, Lehr R, Zhao H, et al:
ATP-competitive inhibitors of the mitotic kinesin KSP that function
via an allosteric mechanism. Nat Chem Biol. 3:722–726. 2007.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Brier S, Lemaire D, Debonis S, Forest E
and Kozielski F: Identification of the protein binding region of
S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin
Eg5. Biochemistry. 43:13072–13082. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sakowicz R, Finer JT, Beraud C, Crompton
A, Lewis E, Fritsch A, Lee Y, Mak J, Moody R, Turincio R, et al:
Antitumor activity of a kinesin inhibitor. Cancer Res.
64:3276–3280. 2004. View Article : Google Scholar
|
39
|
Lad L, Luo L, Carson JD, Wood KW, Hartman
JJ, Copeland RA and Sakowicz R: Mechanism of inhibition of human
KSP by ispinesib. Biochemistry. 47:3576–3585. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cox CD, Coleman PJ, Breslin MJ, Whitman
DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K,
Schaber MD, et al: Kinesin spindle protein (KSP) inhibitors. 9
Discovery of
(2S)-4-(2,5-difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methyl-piperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide
(MK-0731) for the treatment of taxane-refractory cancer. J Med
Chem. 51:4239–4252. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Theoclitou ME, Aquila B, Block MH, Brassil
PJ, Castriotta L, Code E, Collins MP, Davies AM, Deegan T,
Ezhuthachan J, et al: Discovery of
(+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]
thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methyl-benzamide
(AZD4877), a kinesin spindle protein inhibitor and potential
anticancer agent. J Med Chem. 54:6734–6750. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Souid AK, Dubowy RL, Ingle AM, Conlan MG,
Sun J, Blaney SM and Adamson PC: A pediatric phase I trial and
pharmacokinetic study of ispinesib: A Children's Oncology Group
phase I consortium study. Pediatr Blood Cancer. 55:1323–1328. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Infante JR, Kurzrock R, Spratlin J, Burris
HA, Eckhardt SG, Li J, Wu K, Skolnik JM, Hylander-Gans L, Osmukhina
A, et al: A Phase I study to assess the safety, tolerability, and
pharmacokinetics of AZD4877, an intravenous Eg5 inhibitor in
patients with advanced solid tumors. Cancer Chemother Pharmacol.
69:165–172. 2012. View Article : Google Scholar
|
44
|
Glotzer M: The molecular requirements for
cytokinesis. Science. 307:1735–1739. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Neef R, Klein UR, Kopajtich R and Barr FA:
Cooperation between mitotic kinesins controls the late stages of
cytokinesis. Curr Biol. 16:301–307. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zou JX, Duan Z, Wang J, Sokolov A, Xu J,
Chen CZ, Li JJ and Chen HW: Kinesin family deregulation coordinated
by bromo-domain protein ANCCA and histone methyltransferase MLL for
breast cancer cell growth, survival, and tamoxifen resistance. Mol
Cancer Res. 12:539–549. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Murakami H, Ito S, Tanaka H, Kondo E,
Kodera Y and Nakanishi H: Establishment of new intraperitoneal
paclitaxel-resistant gastric cancer cell lines and comprehensive
gene expression analysis. Anticancer Res. 33:4299–4307.
2013.PubMed/NCBI
|