Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)
- Authors:
- Ewa Maj
- Diana Papiernik
- Joanna Wietrzyk
-
Affiliations: Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland - Published online on: September 26, 2016 https://doi.org/10.3892/ijo.2016.3709
- Pages: 1773-1784
-
Copyright: © Maj et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Folkman J, Bach M, Rowe JW, Davidoff F, Lambert P, Hirsch C, Goldberg A, Hiatt HH, Glass J and Henshaw E: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D: History of research on tumor angiogenesis. Springer; New York, NY: 2009 | |
Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS and Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 219:983–985. 1983. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N: Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 29:789–791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY and Hebbel RP: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 247:495–504. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cross MJ and Claesson-Welsh L: FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sennino B, Kuhnert F, Tabruyn SP, Mancuso MR, Hu-Lowe DD, Kuo CJ and McDonald DM: Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors. Cancer Res. 69:4527–4536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vasudev NS and Reynolds AR: Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis. 17:471–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI | |
McIntyre A and Harris AL: Metabolic and hypoxic adaptation to anti-angiogenic therapy: A target for induced essentiality. EMBO Mol Med. 7:368–379. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, et al: Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 35(Suppl): S224–S243. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R and Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI | |
Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, et al: Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol. 27:1227–1234. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, et al; BO17704 Study Group. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: Results from a randomised phase III trial (AVAiL). Ann Oncol. 21:1804–1809. 2010. View Article : Google Scholar : PubMed/NCBI | |
Al-Husein B, Abdalla M, Trepte M, Deremer DL and Somanath PR: Antiangiogenic therapy for cancer: An update. Pharmacotherapy. 32:1095–1111. 2012. View Article : Google Scholar : PubMed/NCBI | |
Poveda AM, Selle F, Hilpert F, Reuss A, Savarese A, Vergote I, Witteveen P, Bamias A, Scotto N, Mitchell L, et al: Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: Analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J Clin Oncol. 33:3836–3838. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu JF and Matulonis UA: Bevacizumab in newly diagnosed ovarian cancer. Lancet Oncol. 16:876–878. 2015. View Article : Google Scholar : PubMed/NCBI | |
Krill LS and Tewari KS: Integration of bevacizumab with chemotherapy doublets for advanced cervical cancer. Expert Opin Pharmacother. 16:675–683. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crafton SM and Salani R: Beyond chemotherapy: An overview and review of targeted therapy in cervical cancer. Clin Ther. 38:449–458. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Nielsen TE and Clausen MH: FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 36:422–439. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Nielsen TE and Clausen MH: Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov Today. 21:5–10. 2016. View Article : Google Scholar | |
Ciombor KK and Berlin J: Aflibercept - a decoy VEGF receptor. Curr Oncol Rep. 16:3682014. View Article : Google Scholar | |
Aprile G, Rijavec E, Fontanella C, Rihawi K and Grossi F: Ramucirumab: Preclinical research and clinical development. Onco Targets Ther. 7:1997–2006. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tiwari P: Ramucirumab: Boon or bane. J Egypt Natl Canc Inst. 28:133–140. 2016. View Article : Google Scholar : PubMed/NCBI | |
(http://www.fda.gov/). Accessed 22 Apr 2016 | |
Calero R, Morchon E, Johnsen JI and Serrano R: Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis. PLoS One. 9:e956282014. View Article : Google Scholar : PubMed/NCBI | |
Maj E, Filip-Psurska B, Świtalska M, Kutner A, Wietrzyk J and Vitamin D: Vitamin D analogs potentiate the antitumor effect of imatinib mesylate in a human A549 lung tumor model. Int J Mol Sci. 16:27191–27207. 2015. View Article : Google Scholar : PubMed/NCBI | |
Legros L, Bourcier C, Jacquel A, Mahon FX, Cassuto JP, Auberger P and Pagès G: Imatinib mesylate (STI571) decreases the vascular endothelial growth factor plasma concentration in patients with chronic myeloid leukemia. Blood. 104:495–501. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kerbel RS, Viloria-Petit A, Klement G and Rak J: ‘Accidental’ anti-angiogenic drugs: anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer. 36:1248–1257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P and Kerbel RS: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 105:R15–R24. 2000. View Article : Google Scholar : PubMed/NCBI | |
Man S, Bocci G, Francia G, Green SK, Jothy S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G and Kerbel RS: Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res. 62:2731–2735. 2002.PubMed/NCBI | |
Wu H, Xin Y, Zhao J, Sun D, Li W, Hu Y and Wang S: Metronomic docetaxel chemotherapy inhibits angiogenesis and tumor growth in a gastric cancer model. Cancer Chemother Pharmacol. 68:879–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo XL, Lin GJ, Zhao H, Gao Y, Qian LP, Xu SR, Fu LN, Xu Q and Wang JJ: Inhibitory effects of docetaxel on expression of VEGF, bFGF and MMPs of LS174T cell. World J Gastroenterol. 9:1995–1998. 2003. View Article : Google Scholar : PubMed/NCBI | |
Blazejczyk A, Papiernik D, Porshneva K, Sadowska J and Wietrzyk J: Endothelium and cancer metastasis: Perspectives for antimetastatic therapy. Pharmacol Rep. 67:711–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sagar SM, Yance D and Wong RK: Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1. Curr Oncol. 13:14–26. 2006. | |
Sagar SM, Yance D and Wong RK: Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 2. Curr Oncol. 13:99–107. 2006. | |
Sulaiman RS, Basavarajappa HD and Corson TW: Natural product inhibitors of ocular angiogenesis. Exp Eye Res. 129:161–171. 2014. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Singh P and Shukla Y: New strategies in cancer chemoprevention by phytochemicals. Front Biosci (Elite Ed). 4:426–452. 2012. View Article : Google Scholar | |
Kang X, Jin S and Zhang Q: Antitumor and antiangiogenic activity of soy phytoestrogen on 7,12-dimethylbenz[alpha] anthracene-induced mammary tumors following ovariectomy in Sprague-Dawley rats. J Food Sci. 74:H237–H242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Uifălean A, Schneider S, Ionescu C, Lalk M and Iuga CA: Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules. 21:E132015. View Article : Google Scholar | |
Wietrzyk J, Opolski A, Madej J and Radzikowski C: Antitumour and antimetastatic effect of genistein alone or combined with cyclophosphamide in mice transplanted with various tumours depends on the route of tumour transplantation. In Vivo. 14:357–362. 2000.PubMed/NCBI | |
Wietrzyk J, Opolski A, Madej J and Radzikowski C: The antitumor effect of postoperative treatment with genistein alone or combined with cyclophosphamide in mice bearing transplantable tumors. Acta Pol Pharm. 57(Suppl): 5–8. 2000. | |
Wietrzyk J, Boratynski J, Grynkiewicz G, Ryczynski A, Radzikowski C and Opolski A: Antiangiogenic and antitumour effects in vivo of genistein applied alone or combined with cyclophosphamide. Anticancer Res. 21:3893–3896. 2001. | |
Park SY, Jeong KJ, Lee J, Yoon DS, Choi WS, Kim YK, Han JW, Kim YM, Kim BK and Lee HY: Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: Their inhibition by resveratrol. Cancer Lett. 258:63–69. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Pan C, Zhao S, Wang Z, Zhang H and Wu W: Resveratrol inhibits tumor necrosis factor-alpha-mediated matrix metal-loproteinase-9 expression and invasion of human hepatocellular carcinoma cells. Biomed Pharmacother. 62:366–372. 2008. View Article : Google Scholar | |
Ma Y, Johnson CS and Trump DL: Mechanistic insights of Vitamin D anticancer effects. Vitam Horm. 100:395–431. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jäpelt RB and Jakobsen J: Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front Plant Sci. 4:1362013. View Article : Google Scholar : PubMed/NCBI | |
Haussler MR, Jurutka PW, Mizwicki M and Norman AW: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 25:543–559. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feldman D, Krishnan AV, Swami S, Giovannucci E and Feldman BJ: The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 14:342–357. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oikawa T, Hirotani K, Ogasawara H, Katayama T, Nakamura O, Iwaguchi T and Hiragun A: Inhibition of angiogenesis by vitamin D3 analogues. Eur J Pharmacol. 178:247–250. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bao BY, Yao J and Lee YF: 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis. 27:1883–1893. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y and Mabjeesh NJ: 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther. 6:1433–1439. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chung I, Han G, Seshadri M, Gillard BM, Yu WD, Foster BA, Trump DL and Johnson CS: Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo. Cancer Res. 69:967–975. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iseki K, Tatsuta M, Uehara H, Iishi H, Yano H, Sakai N and Ishiguro S: Inhibition of angiogenesis as a mechanism for inhibition by 1alpha-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by azoxymethane in Wistar rats. Int J Cancer. 81:730–733. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa K, Sasaki Y, Kato S, Kubodera N and Okano T: 22-Oxa-1alpha,25-dihydroxyvitamin D3 inhibits metastasis and angiogenesis in lung cancer. Carcinogenesis. 26:1044–1054. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wietrzyk J, Filip B, Milczarek M, Klopotowska D, Maciejewska M, Dabrowska K, Kurzepa A, Dzimira S, Madej J and Kutner A: The influence of 1,25-dihydroxyvitamin D3 and 1,24-dihydroxyvitamin D3 on αvβ3 integrin expression in cancer cell lines. Oncol Rep. 20:941–952. 2008.PubMed/NCBI | |
Jones G, Strugnell SA and DeLuca HF: Current understanding of the molecular actions of vitamin D. Physiol Rev. 78:1193–1231. 1998.PubMed/NCBI | |
Ma Y, Trump DL and Johnson CS: Vitamin D in combination cancer treatment. J Cancer. 1:101–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leyssens C, Verlinden L and Verstuyf A: The future of vitamin D analogs. Front Physiol. 5:1222014. View Article : Google Scholar : PubMed/NCBI | |
Milczarek M, Psurski M, Kutner A and Wietrzyk J: Vitamin D analogs enhance the anticancer activity of 5-fluorouracil in an in vivo mouse colon cancer model. BMC Cancer. 13:2942013. View Article : Google Scholar : PubMed/NCBI | |
Milczarek M, Filip-Psurska B, Swiętnicki W, Kutner A and Wietrzyk J: Vitamin D analogs combined with 5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep. 32:491–504. 2014.PubMed/NCBI | |
Okamoto R, Delansorne R, Wakimoto N, Doan NB, Akagi T, Shen M, Ho QH, Said JW and Koeffler HP: Inecalcitol, an analog of 1α,25(OH)2D3, induces growth arrest of androgen-dependent prostate cancer cells. Int J Cancer. 130:2464–2473. 2012. View Article : Google Scholar | |
Protiva P, Pendyala S, Nelson C, Augenlicht LH, Lipkin M and Holt PR: Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: A human crossover trial. Am J Clin Nutr. 103:1224–1231. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lappe JM, Travers-Gustafson D, Davies KM, Recker RR and Heaney RP: Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am J Clin Nutr. 85:1586–1591. 2007.PubMed/NCBI | |
Jacot W, Firmin N, Roca L, Topart D, Gallet S, Durigova A, Mirr S, Abach L, Pouderoux S, D'Hondt V, et al: Impact of a tailored oral vitamin D supplementation regimen on serum 25-hydroxyvitamin D levels in early breast cancer patients: A randomized phase III study. Ann Oncol. 27:1235–1241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Krstic G, Wetterslev J and Gluud C: Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev. (6): CD0074692014.PubMed/NCBI | |
Crew KD: Vitamin D: Are we ready to supplement for breast cancer prevention and treatment? ISRN Oncology. 2013:2013.Article ID 483687. View Article : Google Scholar : PubMed/NCBI | |
Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI | |
Jain RK, Duda DG, Clark JW and Loeffler JS: Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 3:24–40. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jayson GC, Hicklin DJ and Ellis LM: Antiangiogenic therapy-evolving view based on clinical trial results. Nat Rev Clin Oncol. 9:297–303. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med. 7:987–989. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N and Jain RK: Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA. 93:14765–14770. 1996. View Article : Google Scholar : PubMed/NCBI | |
Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CYC, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and Davidoff AM: Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res. 13:3942–3950. 2007. View Article : Google Scholar : PubMed/NCBI | |
Myers AL, Williams RF, Ng CY, Hartwich JE and Davidoff AM: Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J Pediatr Surg. 45:1080–1085. 2010. View Article : Google Scholar : PubMed/NCBI | |
Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, et al: Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 165:35–52. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Guo P and Gallo JM: Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin Cancer Res. 14:1540–1549. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q and Gallo JM: Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. Neuro Oncol. 11:301–310. 2009. View Article : Google Scholar : | |
Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, et al: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 10:145–147. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shi S, Chen L and Huang G: Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature. Med Oncol. 30:6982013. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, et al: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 109:17561–17566. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, et al: Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 116:2610–2621. 2006. View Article : Google Scholar : PubMed/NCBI | |
Griffioen AW, Mans LA, de Graaf AMA, Nowak-Sliwinska P, de Hoog CL, de Jong TAM, Vyth-Dreese FA, van Beijnum JR, Bex A and Jonasch E: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res. 18:3961–3971. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wolter P, Beuselinck B, Pans S and Schöffski P: Flare-up: An often unreported phenomenon nevertheless familiar to oncologists prescribing tyrosine kinase inhibitors. Acta Oncol. 48:621–624. 2009. View Article : Google Scholar | |
Chen DR, Lin C and Wang YF: Window of opportunity: A new insight into sequential bevacizumab and paclitaxel in two cases of metastatic triple-negative breast cancer. Exp Ther Med. 10:885–888. 2015.PubMed/NCBI | |
Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, et al: Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60:5565–5570. 2000.PubMed/NCBI | |
Zhang L, Takara K, Yamakawa D, Kidoya H and Takakura N: Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy. Cancer Sci. 107:36–44. 2016. View Article : Google Scholar : | |
McGee MC, Hamner JB, Williams RF, Rosati SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC, et al: Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 76:1537–1545. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dings RPM, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH and Griffin RJ: Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res. 13:3395–3402. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vangestel C, Van de Wiele C, Van Damme N, Staelens S, Pauwels P, Reutelingsperger CPM and Peeters M: 99mTc-(CO)3 His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab. J Nucl Med. 52:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Agudo E, Mondejar T, Soto-Montenegro ML, Megias D, Mouron S, Sanchez J, Hidalgo M, Lopez-Casas PP, Mulero F, Desco M, et al: Monitoring vascular normalization induced by antiangiogenic treatment with F-fluoromisonidazole-PET. Mol Oncol. 10:704–718. 2015. View Article : Google Scholar | |
Cao Y: Off-tumor target--beneficial site for antiangiogenic cancer therapy? Nat Rev Clin Oncol. 7:604–608. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhang Y, Cao Z, Ji H, Yang X, Iwamoto H, Wahlberg E, Länne T, Sun B and Cao Y: Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc Natl Acad Sci USA. 110:12018–12023. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wong AK, Alfert M, Castrillon DH, Shen Q, Holash J, Yancopoulos GD and Chin L: Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc Natl Acad Sci USA. 98:7481–7486. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pelosof LC and Gerber DE: Paraneoplastic syndromes: An approach to diagnosis and treatment. Mayo Clin Proc. 85:838–854. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Religa P, Cao R, Hansen AJ, Lucchini F, Jones B, Wu Y, Zhu Z, Pytowski B, Liang Y, et al: Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc Natl Acad Sci USA. 105:18513–18518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cao Y: Future options of anti-angiogenic cancer therapy. Chin J Cancer. 35:212016. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Loges S, Schmidt T and Carmeliet P: Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer. 1:12–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bergers G and Hanahan D: Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603. 2008. View Article : Google Scholar : PubMed/NCBI | |
van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL and Griffioen AW: The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev. 67:441–461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, et al: Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: Continued experience of a phase I trial in rectal cancer patients. J Clin Oncol. 23:8136–8139. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, Adinin R, Overman MJ, Valero V, Wen S, et al: Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol. 28:453–459. 2010. View Article : Google Scholar : | |
Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA and Teh BT: Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70:1063–1071. 2010. View Article : Google Scholar : PubMed/NCBI | |
Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, et al: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 11:83–95. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lindholm EM, Krohn M, Iadevaia S, Kristian A, Mills GB, Mælandsmo GM and Engebraaten O: Proteomic characterization of breast cancer xenografts identifies early and late bevacizumab-induced responses and predicts effective drug combinations. Clin Cancer Res. 20:404–412. 2014. View Article : Google Scholar | |
Ebos JML, Lee CR, Christensen JG, Mutsaers AJ and Kerbel RS: Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA. 104:17069–17074. 2007. View Article : Google Scholar : PubMed/NCBI | |
Finke J, Ko J, Rini B, Rayman P, Ireland J and Cohen P: MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 11:856–861. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP and Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 25:911–920. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, et al: Angiogenesis and immunity: A bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 30:83–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar | |
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay 0T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI | |
Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J and Ferrara N: PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 15:21–34. 2009. View Article : Google Scholar | |
Gerhardt H and Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314:15–23. 2003. View Article : Google Scholar : PubMed/NCBI | |
Welti J, Loges S, Dimmeler S and Carmeliet P: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 123:3190–3200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Soda Y, Myskiw C, Rommel A and Verma IM: Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl). 91:439–448. 2013. View Article : Google Scholar |