1
|
Yi Z, Fu Y, Zhao S, Zhang X and Ma C:
Differential expression of miRNA patterns in renal cell carcinoma
and nontumorous tissues. J Cancer Res Clin Oncol. 136:855–862.
2010. View Article : Google Scholar
|
2
|
Rini BI, Campbell SC and Escudier B: Renal
cell carcinoma. Lancet. 373:1119–1132. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cheungpasitporn W, Thongprayoon C,
O’Corragain OA, Edmonds PJ, Ungprasert P, Kittanamongkolchai W and
Erickson SB: The risk of kidney cancer in patients with kidney
stones: A systematic review and meta-analysis. QJM. 108:205–212.
2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ljungberg B, Campbell SC, Choi HY, Jacqmin
D, Lee JE, Weikert S and Kiemeney LA: The epidemiology of renal
cell carcinoma. Eur Urol. 60:615–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Singer EA, Gupta GN, Marchalik D and
Srinivasan R: Evolving therapeutic targets in renal cell carcinoma.
Curr Opin Oncol. 25:273–280. 2013.PubMed/NCBI
|
6
|
Allcock RJ, Barrow AD, Forbes S, Beck S
and Trowsdale J: The human TREM gene cluster at 6p21.1 encodes both
activating and inhibitory single IgV domain receptors and includes
NKp44. Eur J Immunol. 33:567–577. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Klesney-Tait J, Turnbull IR and Colonna M:
The TREM receptor family and signal integration. Nat Immunol.
7:1266–1273. 2006. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Whittaker GC, Orr SJ, Quigley L, Hughes L,
Francischetti IM, Zhang W and McVicar DW: The linker for activation
of B cells (LAB)/non-T cell activation linker (NTAL) regulates
triggering receptor expressed on myeloid cells (TREM)-2 signaling
and macrophage inflammatory responses independently of the linker
for activation of T cells. J Biol Chem. 285:2976–2985. 2010.
View Article : Google Scholar :
|
9
|
Paradowska-Gorycka A and Jurkowska M:
Structure, expression pattern and biological activity of molecular
complex TREM-2/DAP12. Hum Immunol. 74:730–737. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Filbert EA: Investigations of mechanisms
involved in LPS-stimulated osteoclastogenesis. University of
Connecticut, School of Dental Medicine; SoDM Masters Theses, Paper
155. 2007
|
11
|
Sharif O and Knapp S: From expression to
signaling: Roles of TREM-1 and TREM-2 in innate immunity and
bacterial infection. Immunobiology. 213:701–713. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tomasello E, Desmoulins P-O, Chemin K,
Guia S, Cremer H, Ortaldo J, Love P, Kaiserlian D and Vivier E:
Combined natural killer cell and dendritic cell functional
deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity.
13:355–364. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Helming L, Tomasello E, Kyriakides TR,
Martinez FO, Takai T, Gordon S and Vivier E: Essential role of
DAP12 signaling in macrophage programming into a fusion-competent
state. Sci Signal. 1:ra112008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Turnbull IR, Gilfillan S, Cella M, Aoshi
T, Miller M, Piccio L, Hernandez M and Colonna M: Cutting edge:
TREM-2 attenuates macrophage activation. J Immunol. 177:3520–3524.
2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Paloneva J, Manninen T, Christman G,
Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R,
Salmaggi A, et al: Mutations in two genes encoding different
subunits of a receptor signaling complex result in an identical
disease phenotype. Am J Hum Genet. 71:656–662. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guerreiro R, Wojtas A, Bras J,
Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe
JS, Younkin S, et al; Alzheimer Genetic Analysis Group. TREM2
variants in Alzheimer’s disease. N Engl J Med. 368:117–127. 2013.
View Article : Google Scholar
|
17
|
Wang XQ, Tao BB, Li B, Wang XH, Zhang WC,
Wan L, Hua XM and Li ST: Overexpression of TREM2 enhances glioma
cell proliferation and invasion: A therapeutic target in human
glioma. Oncotarget. 7:2354–2366. 2016.
|
18
|
Yao Y, Li H, Wang Y and Zhou J: Triggering
receptor expressed on myeloid cells-2 (TREM-2) elicited by lung
cancer cells to facilitate tumor immune evasion. J Clin Oncol.
31(Suppl): 220542013.
|
19
|
Chen Y, Guo Y, Yang H, Shi G, Xu G, Shi J,
Yin N and Chen D: TRIM66 overexpresssion contributes to
osteosarcoma carcinogenesis and indicates poor survival outcome.
Oncotarget. 6:23708–23719. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liao R, Sun TW, Yi Y, Wu H, Li YW, Wang
JX, Zhou J, Shi YH, Cheng YF, Qiu SJ, et al: Expression of TREM-1
in hepatic stellate cells and prognostic value in hepatitis
B-related hepatocellular carcinoma. Cancer Sci. 103:984–992. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ho CC, Liao WY, Wang CY, Lu YH, Huang HY,
Chen HY, Chan WK, Chen HW and Yang PC: TREM-1 expression in
tumor-associated macrophages and clinical outcome in lung cancer.
Am J Respir Crit Care Med. 177:763–770. 2008. View Article : Google Scholar
|
22
|
Yuan Z, Mehta HJ, Mohammed K, Nasreen N,
Roman R, Brantly M and Sadikot RT: TREM-1 is induced in tumor
associated macrophages by cyclo-oxygenase pathway in human
non-small cell lung cancer. PLoS One. 9:e942412014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gobé G, Rubin M, Williams G, Sawczuk I and
Buttyan R: Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in
renal cell carcinomas. Cancer Invest. 20:324–332. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sejima T and Miyagawa I: Expression of
bcl-2, p53 oncoprotein, and proliferating cell nuclear antigen in
renal cell carcinoma. Eur Urol. 35:242–248. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fisher PA, Moutsiakis DL, McConnell M,
Miller H and Mozzherin DJ: A single amino acid change (E85K) in
human PCNA that leads, relative to wild type, to enhanced DNA
synthesis by DNA polymerase δ past nucleotide base lesions (TLS) as
well as on unmodified templates. Biochemistry. 43:15915–15921.
2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang P, Sun Y, Hsu H, Zhang L, Zhang Y
and Lee MY: The interdomain connector loop of human PCNA is
involved in a direct interaction with human polymerase δ. J Biol
Chem. 273:713–719. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pleschke JM, Kleczkowska HE, Strohm M and
Althaus FR: Poly(ADP-ribose) binds to specific domains in DNA
damage checkpoint proteins. J Biol Chem. 275:40974–40980. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Cohen GM: Caspases: The executioners of
apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
Datta SR, Brunet A and Greenberg ME:
Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927.
1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Fry MJ: Phosphoinositide 3-kinase
signalling in breast cancer: How big a role might it play? Breast
Cancer Res. 3:304–312. 2001. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Lin X, Böhle AS, Dohrmann P, Leuschner I,
Schulz A, Kremer B and Fändrich F: Overexpression of
phosphatidylinositol 3-kinase in human lung cancer. Langenbecks
Arch Surg. 386:293–301. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Martínez-Lorenzo MJ, Anel A, Monleón I,
Sierra JJ, Piñeiro A, Naval J and Alava MA: Tyrosine
phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase
correlates with high proliferation rates in sublines derived from
the Jurkat leukemia. Int J Biochem Cell Biol. 32:435–445. 2000.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Merseburger AS, Hennenlotter J, Kuehs U,
Simon P, Kruck S, Koch E, Stenzl A and Kuczyk MA: Activation of
PI3K is associated with reduced survival in renal cell carcinoma.
Urol Int. 80:372–377. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhu Y, Xu L, Zhang J, Xu W, Liu Y, Yin H,
Lv T, An H, Liu L, He H, et al: Klotho suppresses tumor progression
via inhibiting PI3K/Akt/GSK3β/Snail signaling in renal cell
carcinoma. Cancer Sci. 104:663–671. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhan YH, Liu J, Qu XJ, Hou KZ, Wang KF,
Liu YP and Wu B: β-Elemene induces apoptosis in human renal-cell
carcinoma 786–0 cells through inhibition of MAPK/ERK and
PI3K/Akt/mTOR signalling pathways. Asian Pac J Cancer Prev.
13:2739–2744. 2012. View Article : Google Scholar
|
37
|
Li H, Zeng J and Shen K: PI3K/AKT/mTOR
signaling pathway as a therapeutic target for ovarian cancer. Arch
Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Roy SK, Srivastava RK and Shankar S:
Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of
FOXO transcription factor, leading to cell cycle arrest and
apoptosis in pancreatic cancer. J Mol Signal. 5:102010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun M, Zhu M, Chen K, Nie X, Deng Q,
Hazlett LD, Wu Y, Li M, Wu M and Huang X: TREM-2 promotes host
resistance against Pseudomonas aeruginosa infection by suppressing
corneal inflammation via a PI3K/Akt signaling pathway. Invest
Ophthalmol Vis Sci. 54:3451–3462. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhu M, Li D, Wu Y, Huang X and Wu M:
TREM-2 promotes macrophage-mediated eradication of Pseudomonas
aeruginosa via a PI3K/Akt pathway. Scand J Immunol. 79:187–196.
2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Myers MP and Tonks NK: PTEN: Sometimes
taking it off can be better than putting it on. Am J Hum Genet.
61:1234–1238. 1997. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
43
|
Eng C: PTEN: One gene, many syndromes. Hum
Mutat. 22:183–198. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Muñoz J, Lázcoz P, Inda MM, Nistal M,
Pestaña A, Encío IJ and Castresana JS: Homozygous deletion and
expression of PTEN and DMBT1 in human primary neuroblastoma and
cell lines. Int J Cancer. 109:673–679. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Nassif NT, Lobo GP, Wu X, Henderson CJ,
Morrison CD, Eng C, Jalaludin B and Segelov E: PTEN mutations are
common in sporadic microsatellite stable colorectal cancer.
Oncogene. 23:617–628. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Osaki M, Oshimura M and Ito H: PI3K-Akt
pathway: Its functions and alterations in human cancer. Apoptosis.
9:667–676. 2004. View Article : Google Scholar : PubMed/NCBI
|