1
|
Gareau JR and Lima CD: The SUMO pathway:
Emerging mechanisms that shape specificity, conjugation and
recognition. Nat Rev Mol Cell Biol. 11:861–871. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schwertman P, Bekker-Jensen S and Mailand
N: Regulation of DNA double-strand break repair by ubiquitin and
ubiquitin-like modifiers. Nat Rev Mol Cell Biol. 17:379–394. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Stankovic-Valentin N, Drzewicka K, König
C, Schiebel E and Melchior F: Redox regulation of SUMO enzymes is
required for ATM activity and survival in oxidative stress. EMBO J.
35:1312–1329. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guervilly JH, Takedachi A, Naim V,
Scaglione S, Chawhan C, Lovera Y, Despras E, Kuraoka I, Kannouche
P, Rosselli F, et al: The SLX4 complex is a SUMO E3 ligase that
impacts on replication stress outcome and genome stability. Mol
Cell. 57:123–137. 2015. View Article : Google Scholar
|
5
|
Ouyang J, Garner E, Hallet A, Nguyen HD,
Rickman KA, Gill G, Smogorzewska A and Zou L: Noncovalent
interactions with SUMO and ubiquitin orchestrate distinct functions
of the SLX4 complex in genome maintenance. Mol Cell. 57:108–122.
2015. View Article : Google Scholar
|
6
|
Gupta MK, McLendon PM, Gulick J, James J,
Khalili K and Robbins J: UBC9-mediated sumoylation favorably
impacts cardiac function in compromised hearts. Circ Res.
118:1894–1905. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Klug H, Xaver M, Chaugule VK, Koidl S,
Mittler G, Klein F and Pichler A: Ubc9 sumoylation controls SUMO
chain formation and meiotic synapsis in Saccharomyces cerevisiae.
Mol Cell. 50:625–636. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mattoscio D and Chiocca S: SUMO pathway
components as possible cancer biomarkers. Future Oncol.
11:1599–1610. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mo YY, Yu Y, Theodosiou E, Ee PL and Beck
WT: A role for Ubc9 in tumorigenesis. Oncogene. 24:2677–2683. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Moschos SJ, Smith AP, Mandic M,
Athanassiou C, Watson-Hurst K, Jukic DM, Edington HD, Kirkwood JM
and Becker D: SAGE and antibody array analysis of
melanoma-infiltrated lymph nodes: Identification of Ubc9 as an
important molecule in advanced-stage melanomas. Oncogene.
26:4216–4225. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ronen O, Malone JP, Kay P, Bivens C, Hall
K, Paruchuri LP, Mo YY, Robbins KT and Ran S: Expression of a novel
marker, Ubc9, in squamous cell carcinoma of the head and neck. Head
Neck. 31:845–855. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moschos SJ, Jukic DM, Athanassiou C,
Bhargava R, Dacic S, Wang X, Kuan SF, Fayewicz SL, Galambos C,
Acquafondata M, et al: Expression analysis of Ubc9, the single
small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in
normal and malignant tissues. Hum Pathol. 41:1286–1298. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li H, Niu H, Peng Y, Wang J and He P: Ubc9
promotes invasion and metastasis of lung cancer cells. Oncol Rep.
29:1588–1594. 2013.PubMed/NCBI
|
14
|
Synowiec E, Krupa R, Morawiec Z, Wasylecka
M, Dziki L, Morawiec J, Blasiak J and Wozniak K: Efficacy of DNA
double-strand breaks repair in breast cancer is decreased in
carriers of the variant allele of the UBC9 gene c. 73G>A
polymorphism. Mutat Res. 694:31–38. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu S, Sachdeva M, Wu F, Lu Z and Mo YY:
Ubc9 promotes breast cell invasion and metastasis in a
sumoylation-independent manner. Oncogene. 29:1763–1772. 2010.
View Article : Google Scholar :
|
16
|
Mo YY, Yu Y, Ee PL and Beck WT:
Overexpression of a dominant-negative mutant Ubc9 is associated
with increased sensitivity to anticancer drugs. Cancer Res.
64:2793–2798. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lu Z, Wu H and Mo YY: Regulation of bcl-2
expression by Ubc9. Exp Cell Res. 312:1865–1875. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen SF, Gong C, Luo M, Yao HR, Zeng YJ
and Su FX: Ubc9 expression predicts chemoresistance in breast
cancer. Chin J Cancer. 30:638–644. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mo YY, Yu Y, Shen Z and Beck WT: Nucleolar
delocalization of human topoisomerase I in response to topotecan
correlates with sumoylation of the protein. J Biol Chem.
277:2958–2964. 2002. View Article : Google Scholar
|
20
|
Han JY, Lee GK, Yoo SY, Yoon SJ, Cho EY,
Kim HT and Lee JS: Association of SUMO1 and UBC9 genotypes with
tumor response in non-small-cell lung cancer treated with
irinotecan-based chemotherapy. Pharmacogenomics J. 10:86–93. 2010.
View Article : Google Scholar
|
21
|
Masson M, Menissier-de Murcia J, Mattei
MG, de Murcia G and Niedergang CP: Poly(ADP-ribose) polymerase
interacts with a novel human ubiquitin conjugating enzyme: hUbc9.
Gene. 190:287–296. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Koldamova RP, Lefterov IM, DiSabella MT
and Lazo JS: An evolutionarily conserved cysteine protease, human
bleomycin hydrolase, binds to the human homologue of
ubiquitin-conjugating enzyme 9. Mol Pharmacol. 54:954–961.
1998.PubMed/NCBI
|
23
|
Schwartz DR, Homanics GE, Hoyt DG, Klein
E, Abernethy J and Lazo JS: The neutral cysteine protease bleomycin
hydrolase is essential for epidermal integrity and bleomycin
resistance. Proc Natl Acad Sci USA. 96:4680–4685. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen J, Chen Y and He Q: Action of
bleomycin is affected by bleomycin hydrolase but not by caveolin-1.
Int J Oncol. 41:2245–2252. 2012.PubMed/NCBI
|
25
|
Pellegrino S and Altmeyer M: Interplay
between ubiquitin, SUMO, and poly(ADP-Ribose) in the cellular
response to genotoxic stress. Front Genet. 7:632016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ledermann J, Harter P, Gourley C,
Friedlander M, Vergote I, Rustin G, Scott C, Meier W,
Shapira-Frommer R, Safra T, et al: Olaparib maintenance therapy in
platinum-sensitive relapsed ovarian cancer. N Engl J Med.
366:1382–1392. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ledermann J, Harter P, Gourley C,
Friedlander M, Vergote I, Rustin G, Scott CL, Meier W,
Shapira-Frommer R, Safra T, et al: Olaparib maintenance therapy in
patients with platinum-sensitive relapsed serous ovarian cancer: A
preplanned retrospective analysis of outcomes by BRCA status in a
randomised phase 2 trial. Lancet Oncol. 15:852–861. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen Y, Xu R, Chen J, Li X and He Q:
Cleavage of bleomycin hydrolase by caspase-3 during apoptosis.
Oncol Rep. 30:939–944. 2013.PubMed/NCBI
|
29
|
Dieckhoff P, Bolte M, Sancak Y, Braus GH
and Irniger S: Smt3/SUMO and Ubc9 are required for efficient
APC/C-mediated proteolysis in budding yeast. Mol Microbiol.
51:1375–1387. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tomasi ML, Tomasi I, Ramani K, Pascale RM,
Xu J, Giordano P, Mato JM and Lu SC: S-adenosyl methionine
regulates ubiquitin-conjugating enzyme 9 protein expression and
sumoylation in murine liver and human cancers. Hepatology.
56:982–993. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gao N, Shang B, Zhang X, Shen C, Xu R, Xu
H, Chen R and He Q: Potent antitumor actions of the new antibiotic
boningmycin through induction of apoptosis and cellular senescence.
Anticancer Drugs. 22:166–175. 2011. View Article : Google Scholar
|
32
|
Huang RY, Kowalski D, Minderman H, Gandhi
N and Johnson ES: Small ubiquitin-related modifier pathway is a
major determinant of doxorubicin cytotoxicity in Saccharomyces
cerevisiae. Cancer Res. 67:765–772. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hu Y and Parvin JD: Small ubiquitin-like
modifier (SUMO) isoforms and conjugation-independent function in
DNA double-strand break repair pathways. J Biol Chem.
289:21289–21295. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Towne CF, York IA, Watkin LB, Lazo JS and
Rock KL: Analysis of the role of bleomycin hydrolase in antigen
presentation and the generation of CD8 T cell responses. J Immunol.
178:6923–6930. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Suszynska J, Tisonczyk J, Lee HG, Smith MA
and Jakubowski H: Reduced homocysteine-thiolactonase activity in
Alzheimer's disease. J Alzheimers Dis. 19:1177–1183.
2010.PubMed/NCBI
|
36
|
Son ED, Kim Y, Joo KM, Kim HJ, Lee E, Nam
GW, Cho EG, Noh M, Chung JH, Byun SY, et al: Skin dryness in
apparently healthy human skin is associated with decreased
expression of bleomycin hydrolase in the stratum corneum. Clin Exp
Dermatol. 40:247–253. 2015. View Article : Google Scholar
|
37
|
Zimny J, Sikora M, Guranowski A and
Jakubowski H: Protective mechanisms against homocysteine toxicity:
The role of bleomycin hydrolase. J Biol Chem. 281:22485–22492.
2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Borowczyk K, Tisończyk J and Jakubowski H:
Metabolism and neurotoxicity of homocysteine thiolactone in mice:
Protective role of bleomycin hydrolase. Amino Acids. 43:1339–1348.
2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Messner S, Schuermann D, Altmeyer M,
Kassner I, Schmidt D, Schär P, Müller S and Hottiger MO:
Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its
acetylation and restrains transcriptional coactivator function.
FASEB J. 23:3978–3989. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zilio N, Williamson CT, Eustermann S, Shah
R, West SC, Neuhaus D and Ulrich HD: DNA-dependent SUMO
modification of PARP-1. DNA Repair (Amst). 12:761–773. 2013.
View Article : Google Scholar
|
41
|
Scott CL, Swisher EM and Kaufmann SH: Poly
(ADP-ribose) polymerase inhibitors: Recent advances and future
development. J Clin Oncol. 33:1397–1406. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yu B, Swatkoski S, Holly A, Lee LC, Giroux
V, Lee CS, Hsu D, Smith JL, Yuen G, Yue J, et al: Oncogenesis
driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9.
Proc Natl Acad Sci USA. 112:E1724–E1733. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lin CH, Liu SY and Lee EH: SUMO
modification of Akt regulates global SUMOylation and substrate
SUMOylation specificity through Akt phosphorylation of Ubc9 and
SUMO1. Oncogene. 35:595–607. 2016. View Article : Google Scholar
|
44
|
Ying S, Dünnebier T, Si J and Hamann U:
Estrogen receptor alpha and nuclear factor Y coordinately regulate
the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast
cancer cells. PLoS One. 8:e756952013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hirohama M, Kumar A, Fukuda I, Matsuoka S,
Igarashi Y, Saitoh H, Takagi M, Shin-ya K, Honda K, Kondoh Y, et
al: Spectomycin B1 as a novel SUMOylation inhibitor that directly
binds to SUMO E2. ACS Chem Biol. 8:2635–2642. 2013. View Article : Google Scholar : PubMed/NCBI
|