1
|
Ostrom QT, Bauchet L, Davis FG, Deltour I,
Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh
KM, et al: The epidemiology of glioma in adults: A 'state of the
science' review. Neuro Oncol. 16:896–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reardon DA and Wen PY: Glioma in 2014:
Unravelling tumour heterogeneity - implications for therapy. Nat
Rev Clin Oncol. 12:69–70. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Parsons DW, Jones S, Zhang X, Lin JC,
Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et
al: An integrated genomic analysis of human glioblastoma
multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Verhaak RG, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al
Cancer Genome Atlas Research Network: Integrated genomic analysis
identifies clinically relevant subtypes of glioblastoma
characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heimberger AB, Hlatky R, Suki D, Yang D,
Weinberg J, Gilbert M, Sawaya R and Aldape K: Prognostic effect of
epidermal growth factor receptor and EGFRvIII in glioblastoma
multiforme patients. Clin Cancer Res. 11:1462–1466. 2005.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Pelloski CE, Ballman KV, Furth AF, Zhang
L, Lin E, Sulman EP, Bhat K, McDonald JM, Yung WK, Colman H, et al:
Epidermal growth factor receptor variant III status defines
clinically distinct subtypes of glioblastoma. J Clin Oncol.
25:2288–2294. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hegi ME, Diserens AC, Gorlia T, Hamou MF,
de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani
L, et al: MGMT gene silencing and benefit from temozolomide in
glioblastoma. N Engl J Med. 352:997–1003. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rivera AL, Pelloski CE, Gilbert MR, Colman
H, De La Cruz C, Sulman EP, Bekele BN and Aldape KD: MGMT promoter
methylation is predictive of response to radiotherapy and
prognostic in the absence of adjuvant alkylating chemotherapy for
glioblastoma. Neuro Oncol. 12:116–121. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sanchez-Soriano N, Travis M,
Dajas-Bailador F, Gonçalves-Pimentel C, Whitmarsh AJ and Prokop A:
Mouse ACF7 and drosophila short stop modulate filopodia formation
and microtubule organisation during neuronal growth. J Cell Sci.
122:2534–2542. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Munemasa Y, Chang CS, Kwong JM, Kyung H,
Kitaoka Y, Caprioli J and Piri N: The neuronal EGF-related gene
Nell2 interacts with Macf1 and supports survival of retinal
ganglion cells after optic nerve injury. PLoS One. 7:e348102012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bernier G, Pool M, Kilcup M, Alfoldi J, De
Repentigny Y and Kothary R: Acf7 (MACF) is an actin and microtubule
linker protein whose expression predominates in neural, muscle, and
lung development. Dev Dyn. 219:216–225. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sjöblom T, Jones S, Wood LD, Parsons DW,
Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al:
The consensus coding sequences of human breast and colorectal
cancers. Science. 314:268–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu
N, McGlade CJ, Tsao MS and Blencowe BJ: Global profiling and
molecular characterization of alternative splicing events
misregulated in lung cancer. Mol Cell Biol. 31:138–150. 2011.
View Article : Google Scholar :
|
14
|
Carlson BL, Pokorny JL, Schroeder MA and
Sarkaria JN: Establishment, maintenance and in vitro and in vivo
applications of primary human glioblastoma multiforme (GBM)
xenograft models for translational biology studies and drug
discovery. Curr Protoc Pharmacol Chapter. 14:162011.
|
15
|
Chiba K, Kawakami K and Tohyama K:
Simultaneous evaluation of cell viability by neutral red, MTT and
crystal violet staining assays of the same cells. Toxicol In Vitro.
12:251–258. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen HJ, Lin CM, Lin CS, Perez-Olle R,
Leung CL and Liem RK: The role of microtubule actin cross-linking
factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev.
20:1933–1945. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu X, Shen QT, Oristian DS, Lu CP, Zheng
Q, Wang HW and Fuchs E: Skin stem cells orchestrate directional
migration by regulating microtubule-ACF7 connections through GSK3β.
Cell. 144:341–352. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yin X, Xiang T, Li L, Su X, Shu X, Luo X,
Huang J, Yuan Y, Peng W, Oberst M, et al: DACT1, an antagonist to
Wnt/β-catenin signaling, suppresses tumor cell growth and is
frequently silenced in breast cancer. Breast Cancer Res.
15:R232013. View
Article : Google Scholar
|
19
|
Narayanan BA, Doudican NA, Park J, Xu D,
Narayanan NK, Dasgupta R and Mazumder A: Antagonistic effect of
small-molecule inhibitors of Wnt/β-catenin in multiple myeloma.
Anticancer Res. 32:4697–4707. 2012.PubMed/NCBI
|
20
|
Bakker ER, Das AM, Helvensteijn W, Franken
PF, Swagemakers S, van der Valk MA, ten Hagen TL, Kuipers EJ, van
Veelen W and Smits R: Wnt5a promotes human colon cancer cell
migration and invasion but does not augment intestinal
tumorigenesis in Apc1638N mice. Carcinogenesis. 34:2629–2638. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu JM, Jun ES and Jung JS, Suh SY, Han JY,
Kim JY, Kim KW and Jung JS: Role of Wnt5a in the proliferation of
human glioblastoma cells. Cancer Lett. 257:172–181. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Pu P, Zhang Z, Kang C, Jiang R, Jia Z,
Wang G and Jiang H: Downregulation of Wnt2 and beta-catenin by
siRNA suppresses malignant glioma cell growth. Cancer Gene Ther.
16:351–361. 2009. View Article : Google Scholar
|
23
|
De Robertis A, Valensin S, Rossi M, Tunici
P, Verani M, De Rosa A, Giordano C, Varrone M, Nencini A, Pratelli
C, et al: Identification and characterization of a small-molecule
inhibitor of Wnt signaling in glioblastoma cells. Mol Cancer Ther.
12:1180–1189. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kaur N, Chettiar S, Rathod S, Rath P,
Muzumdar D, Shaikh ML and Shiras A: Wnt3a mediated activation of
Wnt/β-catenin signaling promotes tumor progression in glioblastoma.
Mol Cell Neurosci. 54:44–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ramirez YP, Weatherbee JL, Wheelhouse RT
and Ross AH: Glioblastoma multiforme therapy and mechanisms of
resistance. Pharmaceuticals (Basel). 6:1475–1506. 2013. View Article : Google Scholar
|
26
|
Clark MJ, Homer N, O'Connor BD, Chen Z,
Eskin A, Lee H, Merriman B and Nelson SF: U87MG decoded: The
genomic sequence of a cytogenetically aberrant human cancer cell
line. PLoS Genet. 6:e10008322010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Quick Q, Paul M and Skalli O: Roles and
potential clinical applications of intermediate filament proteins
in brain tumors. Semin Pediatr Neurol. 22:40–48. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hu L, Su P, Li R, Yan K, Chen Z, Shang P
and Qian A: Knockdown of microtubule actin crosslinking factor 1
inhibits cell proliferation in MC3T3-E1 osteoblastic cells. BMB
Rep. 48:583–588. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ishii N, Maier D, Merlo A, Tada M,
Sawamura Y, Diserens AC and Van Meir EG: Frequent co-alterations of
TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in
human glioma cell lines. Brain Pathol. 9:469–479. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hu L, Su P, Li R, Yin C, Zhang Y, Shang P,
Yang T and Qian A: MACF1, a versatile spectraplakin: Isoforms,
unique structures, and functions. BMB Rep. 49:37–44. 2016.
View Article : Google Scholar :
|
31
|
Quick Q and Skalli O: Alpha-actinin 1 and
alpha-actinin 4: Contrasting roles in the survival, motility, and
RhoA signaling of astrocytoma cells. Exp Cell Res. 316:1137–1147.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
von Neubeck C, Seidlitz A, Kitzler HH,
Beuthien-Baumann B and Krause M: Glioblastoma multiforme: Emerging
treatments and stratification markers beyond new drugs. Br J
Radiol. 88:201503542015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Loftus JC, Dhruv H, Tuncali S, Kloss J,
Yang Z, Schumacher CA, Cao B, Williams BO, Eschbacher JM, Ross JT,
et al: TROY (TNFRSF19) promotes glioblastoma survival signaling and
therapeutic resistance. Mol Cancer Res. 11:865–874. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Choi EJ, Cho BJ, Lee DJ, Hwang YH, Chun
SH, Kim HH and Kim IA: Enhanced cytotoxic effect of radiation and
temozolomide in malignant glioma cells: Targeting PI3K-AKT-mTOR
signaling, HSP90 and histone deacetylases. BMC Cancer. 14:172014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Vo VA, Lee JW, Lee HJ, Chun W, Lim SY and
Kim SS: Inhibition of JNK potentiates temozolomide-induced
cytotoxicity in U87MG glioblastoma cells via suppression of Akt
phosphorylation. Anticancer Res. 34:5509–5515. 2014.PubMed/NCBI
|
36
|
Hainsworth JD, Shih KC, Shepard GC,
Tillinghast GW, Brinker BT and Spigel DR: Phase II study of
concurrent radiation therapy, temozolomide, and bevacizumab
followed by bevacizumab/everolimus as first-line treatment for
patients with glioblastoma. Clin Adv Hematol Oncol. 10:240–246.
2012.PubMed/NCBI
|
37
|
Chinot OL, Wick W, Mason W, Henriksson R,
Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea
D, et al: Bevacizumab plus radiotherapy-temozolomide for newly
diagnosed glioblastoma. N Engl J Med. 370:709–722. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Clarke JL, Molinaro AM, Phillips JJ,
Butowski NA, Chang SM, Perry A, Costello JF, DeSilva AA, Rabbitt JE
and Prados MD: A single-institution phase II trial of radiation,
temozolomide, erlotinib, and bevacizumab for initial treatment of
glioblastoma. Neuro Oncol. 16:984–990. 2014. View Article : Google Scholar : PubMed/NCBI
|