1
|
Liu B, Chen Y and St Clair DK: ROS and
p53: A versatile partnership. Free Radic Biol Med. 44:1529–1535.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Piskounova E, Agathocleous M, Murphy MM,
Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ
and Morrison SJ: Oxidative stress inhibits distant metastasis by
human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Duan D, Zhang B, Yao J, Liu Y and Fang J:
Shikonin targets cytosolic thioredoxin reductase to induce
ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells.
Free Radic Biol Med. 70:182–193. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Trachootham D, Alexandre J and Huang P:
Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Raj L, Ide T, Gurkar AU, Foley M, Schenone
M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, et al:
Corrigendum: Selective killing of cancer cells by a small molecule
targeting the stress response to ROS. Nature. 526:5962015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu G and Chen X: Regulation of the p53
transcriptional activity. J Cell Biochem. 97:448–458. 2006.
View Article : Google Scholar
|
7
|
Lim YP, Lim TT, Chan YL, Song AC, Yeo BH,
Vojtesek B, Coomber D, Rajagopal G and Lane D: The p53
knowledge-base: An integrated information resource for p53
research. Oncogene. 26:1517–1521. 2007. View Article : Google Scholar
|
8
|
Donehower LA: Phosphatases reverse
p53-mediated cell cycle checkpoints. Proc Natl Acad Sci USA.
111:7172–7173. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wulf GM, Liou YC, Ryo A, Lee SW and Lu KP:
Role of Pin1 in the regulation of p53 stability and p21
transactivation, and cell cycle checkpoints in response to DNA
damage. J Biol Chem. 277:47976–47979. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lv C, Sun W, Sun H, Wei S, Chen R, Wang B
and Huang C: Asperolide A, a marine-derived tetranorditerpenoid,
induces G2/M arrest in human NCI-H460 lung carcinoma cells, is
mediated by p53-p21 stabilization and modulated by Ras/Raf/MEK/ERK
signaling pathway. Mar Drugs. 11:316–331. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang XW, Zhan Q, Coursen JD, Khan MA,
Kontny HU, Yu L, Hollander MC, O'Connor PM, Fornace AJ Jr and
Harris CC: GADD45 induction of a G2/M cell cycle checkpoint. Proc
Natl Acad Sci USA. 96:3706–3711. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Essmann F, Pohlmann S, Gillissen B, Daniel
PT, Schulze-Osthoff K and Jänicke RU: Irradiation-induced
translocation of p53 to mitochondria in the absence of apoptosis. J
Biol Chem. 280:37169–37177. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Marchenko ND, Zaika A and Moll UM: Death
signal-induced localization of p53 protein to mitochondria. A
potential role in apoptotic signaling. J Biol Chem.
275:16202–16212. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao Y, Chaiswing L, Velez JM,
Batinic-Haberle I, Colburn NH, Oberley TD and St Clair DK: p53
translocation to mitochondria precedes its nuclear translocation
and targets mitochondrial oxidative defense protein-manganese
superoxide dismutase. Cancer Res. 65:3745–3750. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fulda S and Debatin KM: Modulation of
apoptosis signaling for cancer therapy. Arch Immunol Ther Exp
(Warsz). 54:173–175. 2006. View Article : Google Scholar
|
16
|
Wang H, Liu Y, Wang X, Liu D, Sun Z, Wang
C, Jin G, Zhang B and Yu S: Randomized clinical control study of
locoregional therapy combined with arsenic trioxide for the
treatment of hepatocellular carcinoma. Cancer. 121:2917–2925. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen P, Yan L, Leng F, Nan W, Yue X, Zheng
Y, Feng N and Li H: Bioleaching of realgar by Acidithiobacillus
ferrooxidans using ferrous iron and elemental sulfur as the sole
and mixed energy sources. Bioresour Technol. 102:3260–3267. 2011.
View Article : Google Scholar
|
18
|
Wang X, Zhang X, Xu Z, Wang Z, Yue X and
Li H: Reversal effect of arsenic sensitivity in human leukemia cell
line K562 and K562/ADM using realgar transforming solution. Biol
Pharm Bull. 36:641–648. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang H, Ding JH, Zhang YH, Shi ST, Gao S,
Gong HZ and Sun GF: Study on water processing conditions of
Realgar. Zhong Yao Cai. 32:26–28. 2009.In Chinese. PubMed/NCBI
|
20
|
Yan L, Yin H, Zhang S, Leng F, Nan W and
Li H: Biosorption of inorganic and organic arsenic from aqueous
solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater.
178:209–217. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xie QJ, Cao XL, Bai L, Wu ZR, Ma YP and Li
HY: Anti-tumor effects and apoptosis induction by Realgar
bioleaching solution in Sarcoma-180 cells in vitro and transplanted
tumors in mice in vivo. Asian Pac J Cancer Prev. 15:2883–2888.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang X, Xie QJ, Wang X, Wang B and Li HY:
Biological extraction of realgar by Acidithiobacillus ferrooxidans
and its in vitro and in vivo antitumor activities. Pharm Biol.
48:40–47. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu D, Zhi D, Zhou T, Yu Q, Wan F, Bai Y
and Li H: Realgar bioleaching solution is a less toxic arsenic
agent in suppressing the Ras/MAPK pathway in Caenorhabditis
elegans. Environ Toxicol Pharmacol. 35:292–299. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Committee CP: Pharmacopoeia of the
People's Republic of China. China Medical Science Press; Beijing:
2010
|
25
|
Kuramata M, Sakakibara F, Kataoka R, Abe
T, Asano M, Baba K, Takagi K and Ishikawa S: Arsenic
biotransformation by Streptomyces sp isolated from rice
rhizosphere. Environ Microbiol. 17:1897–1909. 2015. View Article : Google Scholar
|
26
|
Kim JH, Kim HR, Lee BR, Choi ES, In SI and
Kim E: Carcinogenic activity of PbS quantum dots screened using
exosomal biomarkers secreted from HEK293 cells. Int J Nanomed.
10:5513–5527. 2015. View Article : Google Scholar
|
27
|
Chen SJ, Zhou GB, Zhang XW, Mao JH, de Thé
H and Chen Z: From an old remedy to a magic bullet: Molecular
mechanisms underlying the therapeutic effects of arsenic in
fighting leukemia. Blood. 117:6425–6437. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lau A, Whitman SA, Jaramillo MC and Zhang
DD: Arsenic-mediated activation of the Nrf2-Keap1 antioxidant
pathway. J Biochem Mol Toxicol. 27:99–105. 2013. View Article : Google Scholar :
|
29
|
Zhu J, Chen Z, Lallemand-Breitenbach V and
de Thé H: How acute promyelocytic leukaemia revived arsenic. Nat
Rev Cancer. 2:705–713. 2002. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Kwong YL and Todd D: Delicious poison:
Arsenic trioxide for the treatment of leukemia. Blood.
89:3487–3488. 1997.PubMed/NCBI
|
31
|
He C, Jiang S, Jin H, Chen S, Lin G, Yao
H, Wang X, Mi P, Ji Z, Lin Y, et al: Mitochondrial electron
transport chain identified as a novel molecular target of SPIO
nanoparticles mediated cancer-specific cytotoxicity. Biomaterials.
83:102–114. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sharma VK and Sohn M: Aquatic arsenic:
Toxicity, speciation, transformations, and remediation. Environ
Int. 35:743–759. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Aposhian HV and Aposhian MM: Arsenic
toxicology: Five questions. Chem Res Toxicol. 19:1–15. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Roh JL, Ko JH, Moon SJ, Ryu CH, Choi JY
and Koch WM: The p53-reactivating small-molecule RITA enhances
cisplatin-induced cytotoxicity and apoptosis in head and neck
cancer. Cancer Lett. 325:35–41. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Giono LE and Manfredi JJ: The p53 tumor
suppressor participates in multiple cell cycle checkpoints. J Cell
Physiol. 209:13–20. 2006. View Article : Google Scholar : PubMed/NCBI
|