Hydroxychloroquine sensitizes chronic myeloid leukemia cells to Vγ9Vδ2 T cell-mediated lysis independent of autophagy
- Authors:
- Biqing Han
- Yanmin Zhao
- Yu Lin
- Shan Fu
- Limengmeng Wang
- Mingming Zhang
- Ruxiu Tie
- Binsheng Wang
- Yi Luo
- Lizhen Liu
- Jian Yu
- He Huang
-
Affiliations: Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R. China - Published online on: March 24, 2017 https://doi.org/10.3892/ijo.2017.3934
- Pages: 1810-1820
This article is mentioned in:
Abstract
Daley GQ, Van Etten RA and Baltimore D: Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 247:824–830. 1990. View Article : Google Scholar : PubMed/NCBI | |
Helgason GV, Karvela M and Holyoake TL: Kill one bird with two stones: Potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood. 118:2035–2043. 2011. View Article : Google Scholar : PubMed/NCBI | |
Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, Taylor K, Herrmann R, Seymour JF, Arthur C, et al: Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 102:276–283. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, et al: Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: Results of a phase II study. Blood. 99:3530–3539. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Zhao H, Li Y, Fan J, Sun Y, Wang S, Wang Z, Song P and Ju D: Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia. Autophagy. 11:355–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ and Cleveland JL: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 110:313–322. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Liu YY, You LS and Qian WB: Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacol Sin. 33:542–550. 2012. View Article : Google Scholar : PubMed/NCBI | |
Song P, Ye L, Fan J, Li Y, Zeng X, Wang Z, Wang S, Zhang G, Yang P, Cao Z, et al: Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget. 6:3861–3873. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X and Ye L: Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine. 23:243–252. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen JJ, Long ZJ, Xu DF, Xiao RZ, Liu LL, Xu ZF, Qiu SX, Lin DJ and Liu Q: Inhibition of autophagy augments the anticancer activity of α-mangostin in chronic myeloid leukemia cells. Leuk Lymphoma. 55:628–638. 2014. View Article : Google Scholar | |
Kamitsuji Y, Kuroda J, Kimura S, Toyokuni S, Watanabe K, Ashihara E, Tanaka H, Yui Y, Watanabe M, Matsubara H, et al: The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias. Cell Death Differ. 15:1712–1722. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yogalingam G and Pendergast AM: Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components. J Biol Chem. 283:35941–35953. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calabretta B and Salomoni P: Inhibition of autophagy: A new strategy to enhance sensitivity of chronic myeloid leukemia stem cells to tyrosine kinase inhibitors. Leuk Lymphoma. 52(Suppl 1): 54–59. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, et al: Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 119:1109–1123. 2009. View Article : Google Scholar : PubMed/NCBI | |
Townsend KN, Hughson LR, Schlie K, Poon VI, Westerback A and Lum JJ: Autophagy inhibition in cancer therapy: Metabolic considerations for antitumor immunity. Immunol Rev. 249:176–194. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang X, De Vera ME, Buchser WJ, Romo de Vivar Chavez A, Loughran P, Beer Stolz D, Basse P, Wang T, Van Houten B, Zeh HJ III, et al: Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res. 72:2791–2801. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Cao L, Yu Y, Yang L, Yang M, Liu K, Huang J, Kang R, Livesey KM and Tang D: Inhibiting autophagy potentiates the anticancer activity of IFN1α/IFNα in chronic myeloid leukemia cells. Autophagy. 9:317–327. 2013. View Article : Google Scholar : | |
Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K, Medves S, Zimmer J, Oudin A, Niclou SP, et al: Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci USA. 110:17450–17455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, et al: Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 71:5976–5986. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bonneville M, O'Brien RL and Born WK: Gammadelta T cell effector functions: A blend of innate programming and acquired plasticity. Nat Rev Immunol. 10:467–478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gertner-Dardenne J, Castellano R, Mamessier E, Garbit S, Kochbati E, Etienne A, Charbonnier A, Collette Y, Vey N and Olive D: Human Vγ9Vδ2 T cells specifically recognize and kill acute myeloid leukemic blasts. J Immunol. 188:4701–4708. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meeh PF, King M, O'Brien RL, Muga S, Buckhalts P, Neuberg R and Lamb LS Jr: Characterization of the gammadelta T cell response to acute leukemia. Cancer Immunol Immunother. 55:1072–1080. 2006. View Article : Google Scholar | |
Siegers GM, Felizardo TC, Mathieson AM, Kosaka Y, Wang XH, Medin JA and Keating A: Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph leukemia model. PLoS One. 6:e167002011. View Article : Google Scholar | |
D'Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M, Guggino G, Meraviglia S, Caccamo N, Messina A, et al: Vγ9Vδ2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol. 184:3260–3268. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu KN, Wang YJ, He Y, Hu YX, Fu HR, Sheng LX, Wang BS, Fu S and Huang H: Dasatinib promotes the potential of proliferation and antitumor responses of human γδT cells in a long-term induction ex vivo environment. Leukemia. 28:206–210. 2014. View Article : Google Scholar | |
Mishima Y, Terui Y, Mishima Y, Taniyama A, Kuniyoshi R, Takizawa T, Kimura S, Ozawa K and Hatake K: Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors. Cancer Sci. 99:2200–2208. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J, et al: Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 26:190–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ and Thorburn A: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 8:200–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A and Cosman D: ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun. 305:129–135. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bacon L, Eagle RA, Meyer M, Easom N, Young NT and Trowsdale J: Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol. 173:1078–1084. 2004. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Peng H, Gu ZL, Liang ZQ and Yang CZ: Establishment of an imatinib resistant cell line K562/G01 and its characterization. Zhonghua Xue Ye Xue Za Zhi. 25:337–341. 2004.In Chinese. PubMed/NCBI | |
Godoy-Ramirez K, Mäkitalo B, Thorstensson R, Sandström E, Biberfeld G and Gaines H: A novel assay for assessment of HIV-specific cytotoxicity by multiparameter flow cytometry. Cytometry A. 68:71–80. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gertner J, Wiedemann A, Poupot M and Fournié JJ: Human gammadelta T lymphocytes strip and kill tumor cells simultaneously. Immunol Lett. 110:42–53. 2007. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 8:445–544. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Yoshimori T and Levine B: Methods in mammalian autophagy research. Cell. 140:313–326. 2010. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ1, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, et al: Comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy. 7:1273–1294. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A and Herrmann T: Activation of Vγ9Vδ2T cells by NKG2D. J Immunol. 175:2144–2151. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vantourout P and Hayday A: Six-of-the-best: Unique contributions of γδT cells to immunology. Nat Rev Immunol. 13:88–100. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Cao W, Xi X, Ma C, Cui L and He W: The NKG2D ligand ULBP4 binds to TCRgamma9/δ2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood. 114:310–317. 2009. View Article : Google Scholar : PubMed/NCBI | |
Solomon VR and Lee H: Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 625:220–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lesiak A, Narbutt J, Sysa-Jedrzejowska A, Lukamowicz J, McCauliffe DP and Wózniacka A: Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus. 19:683–688. 2010. View Article : Google Scholar : PubMed/NCBI | |
Savarino A, Di Trani L, Donatelli I, Cauda R and Cassone A: New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 6:67–69. 2006. View Article : Google Scholar : PubMed/NCBI | |
Akalay I, Janji B, Hasmim M, Noman MZ, André F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, et al: Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res. 73:2418–2427. 2013. View Article : Google Scholar : PubMed/NCBI | |
Messai Y, Noman MZ, Janji B, Hasmim M, Escudier B and Chouaib S: The autophagy sensor ITPR1 protects renal carcinoma cells from NK-mediated killing. Autophagy. Feb 25–2015.Epub ahead of print. Update please. View Article : Google Scholar : PubMed/NCBI | |
Sheng Z, Ma L, Sun JE, Zhu LJ and Green MR: BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Blood. 118:2840–2848. 2011. View Article : Google Scholar : PubMed/NCBI | |
Calabretta B and Salomoni P: Suppression of autophagy by BCR/ABL. Front Biosci (Schol Ed). 4:453–460. 2012. View Article : Google Scholar | |
Altman BJ, Jacobs SR, Mason EF, Michalek RD, MacIntyre AN, Coloff JL, Ilkayeva O, Jia W, He YW and Rathmell JC: Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene. 30:1855–1867. 2011. View Article : Google Scholar : | |
Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL and Spies T: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 285:727–729. 1999. View Article : Google Scholar : PubMed/NCBI | |
Raulet DH and Guerra N: Oncogenic stress sensed by the immune system: Role of natural killer cell receptors. Nat Rev Immunol. 9:568–580. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H, Kabelitz D and Wesch D: Lysis of a broad range of epithelial tumour cells by human γδ T cells: Involvement of NKG2D ligands and T-cell receptor-versus NKG2D-dependent recognition. Scand J Immunol. 66:320–328. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gomes AQ, Correia DV and Silva-Santos B: Non-classical major histocompatibility complex proteins as determinants of tumour immunosurveillance. EMBO Rep. 8:1024–1030. 2007. View Article : Google Scholar : PubMed/NCBI | |
Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T and Bukowski JF: MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity. 15:83–93. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fuertes MB, Girart MV, Molinero LL, Domaica CI, Rossi LE, Barrio MM, Mordoh J, Rabinovich GA and Zwirner NW: Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity. J Immunol. 180:4606–4614. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nice TJ, Deng W, Coscoy L and Raulet DH: Stress-regulated targeting of the NKG2D ligand Mult1 by a membrane-associated RING-CH family E3 ligase. J Immunol. 185:5369–5376. 2010. View Article : Google Scholar : PubMed/NCBI | |
Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U, Rammensee HG and Steinle A: Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol. 33:194–203. 2003. View Article : Google Scholar : PubMed/NCBI | |
Raulet DH, Gasser S, Gowen BG, Deng W and Jung H: Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 31:413–441. 2013. View Article : Google Scholar : PubMed/NCBI | |
Andresen L, Skovbakke SL, Persson G, Hagemann-Jensen M, Hansen KA, Jensen H and Skov S: 2-deoxy D-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation. J Immunol. 188:1847–1855. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mellergaard M, Skovbakke SL, Schneider CL, Lauridsen F, Andresen L, Jensen H and Skov S: N-glycosylation of aspara-gine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24. J Biol Chem. 289:20078–20091. 2014. View Article : Google Scholar : PubMed/NCBI | |
Agüera-González S, Boutet P, Reyburn HT and Valés-Gómez M: Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. J Immunol. 182:4800–4808. 2009. View Article : Google Scholar : PubMed/NCBI | |
Uhlenbrock F, Hagemann-Jensen M, Kehlet S, Andresen L, Pastorekova S and Skov S: The NKG2D ligand ULBP2 is specifi-cally regulated through an invariant chain-dependent endosomal pathway. J Immunol. 193:1654–1665. 2014. View Article : Google Scholar : PubMed/NCBI |