Apoptosis in human liver carcinoma caused by gold nanoparticles in combination with carvedilol is mediated via modulation of MAPK/Akt/mTOR pathway and EGFR/FAAD proteins
- Authors:
- Raimundo F. De Araújo Jr
- Jonas B. Pessoa
- Luis J. Cruz
- Alan B. Chan
- Emílio De Castro Miguel
- Rômulo S. Cavalcante
- Gerly Anne C. Brito
- Heloiza Fernada O. Silva
- Luiz H.S. Gasparotto
- Paulo M.M. Guedes
- Aurigena A. Araújo
-
Affiliations: Department of Morphology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil, Post Graduation Programme in Structural and Functional Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil, Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 CL Leiden, The Netherlands, Percuros B.V., 2333 CL Leiden, The Netherlands, Department of Physical/Analytical Center/UFC, Fortaleza, CE, Brazil, Post Graduation Programme in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil, Department of Morphology/Postgraduate Program in Morphology/UFC, Fortaleza, CE, Brazil, Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil, Department of Parasitology and Microbiology and Post Graduation Program in Parasitary Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil, Department of Biophysics and Pharmacology, Post Graduation Programme in Public Health, Post Graduation Programme in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil - Published online on: October 27, 2017 https://doi.org/10.3892/ijo.2017.4179
- Pages: 189-200
This article is mentioned in:
Abstract
Hales S, Chiu A, Husain A, Braun M, Rydall A, Gagliese L, Zimmermann C and Rodin G: The quality of dying and death in cancer and its relationship to palliative care and place of death. J Pain Symptom Manage. 48:839–851. 2014. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar | |
Özdemir F, Akalın G, Şen M, Önder NI, Işcan A, Kutlu HM and Incesu Z: Towards novel anti-tumor strategies for hepatic cancer: ε-viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells. OMICS. 18:324–334. 2014. View Article : Google Scholar | |
Ling CQ: Problems in cancer treatment and major research of integrative medicine. Zhong Xi Yi Jie He Xue Bao. 1:168–170. 2003.In Chinese. View Article : Google Scholar | |
Agrawal S: Late effects of cancer treatment in breast cancer survivors. South Asian J Cancer. 3:112–115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oberstein PE and Olive KP: Pancreatic cancer: Why is it so hard to treat? Therap Adv Gastroenterol. 6:321–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
Michaelson MD, Cotter SE, Gargollo PC, Zietman AL, Dahl DM and Smith MR: Management of complications of prostate cancer treatment. CA Cancer J Clin. 58:196–213. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fernald K and Kurokawa M: Evading apoptosis in cancer. Trends Cell Biol. 23:620–633. 2013. View Article : Google Scholar : PubMed/NCBI | |
Labi V and Erlacher M: How cell death shapes cancer. Cell Death Dis. 6:e16752015. View Article : Google Scholar : PubMed/NCBI | |
Ran LK, Chen Y, Zhang ZZ, Tao NN, Ren JH, Zhou L, Tang H, Chen X, Chen K, Li WY, et al: SIRT6 verexpression Potentiates apoptosis evasion in hepatocellular carcinoma via BCL2-associated X protein-dependent apoptotic pathway. Clin Cancer Res. 22:3372–3382. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Tan X, Liu J, Shen Y, Wu D, Ren M, Huang P and Yu D: Inhibition of PI3K/Akt/mTOR signaling pathway enhances the sensitivity of the SKOV3/DDP ovarian cancer cell line to cisplatin in vitro. Chin J Cancer Res. 26:564–572. 2014.PubMed/NCBI | |
Lu Z and Xu S: ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 58:621–631. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Cigliano A, Delogu S, Armbruster J, Dombrowski F, Evert M, Chen X and Calvisi DF: Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: Implications for the treatment of human liver cancer. Cell Cycle. 12:1999–2010. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katayama K, Noguchi K and Sugimoto Y: Regulations of P-glycoprotein/ABCB1/MDR1 in human cancer cells. New J Sci. 2014:e4769742014. View Article : Google Scholar | |
Yang X, Uziely B, Groshen S, Lukas J, Israel V, Russell C, Dunnington G, Formenti S, Muggia F and Press MF: MDR1 gene expression in primary and advanced breast cancer. Lab Invest. 79:271–280. 1999.PubMed/NCBI | |
Chiara F, Gambalunga A, Sciacovelli M, Nicolli A, Ronconi L, Fregona D, Bernardi P, Rasola A and Trevisan A: Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3α/β and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death Dis. 3:e4442012. View Article : Google Scholar | |
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS and Doetsch PW: Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 8:e811622013. View Article : Google Scholar : PubMed/NCBI | |
Dreaden EC, Austin LA, Mackey MA and El-Sayed MA: Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 3:457–478. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Hirst DG and O'Sullivan JM: Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 85:101–113. 2012. View Article : Google Scholar : | |
Lee J, Chatterjee DK, Lee MH and Krishnan S: Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett. 347:46–53. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alkilany AM and Murphy CJ: Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res. 12:2313–2333. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alvarenga ÉC, Caires A, Ladeira LO, Gamero EJP, Andrade LM and Paz MTL: Potenciais alvos terapêuticos contra o câncer. Cienc Cult. 66:43–48. 2014. View Article : Google Scholar | |
Naha PC, Chhour P and Cormode DP: Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicol In Vitro. 29:1445–1453. 2015. View Article : Google Scholar : PubMed/NCBI | |
Butterworth KT, Coulter JA, Jain S, Forker J, McMahon SJ, Schettino G, Prise KM, Currell FJ and Hirst DG: Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy. Nanotechnology. 21:2951012010. View Article : Google Scholar : PubMed/NCBI | |
Coulter JA, Jain S, Butterworth KT, Taggart LE, Dickson GR, McMahon SJ, Hyland WB, Muir MF, Trainor C, Hounsell AR, et al: Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine. 7:2673–2685. 2012. View Article : Google Scholar : PubMed/NCBI | |
Murawala P, Tirmale A, Shiras A and Prasad BLV: In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells. Mater Sci Eng C. 34:158–167. 2014. View Article : Google Scholar | |
Patra HK, Banerjee S, Chaudhuri U, Lahiri P and Dasgupta AK: Cell selective response to gold nanoparticles. Nanomedicine (Lond). 3:111–119. 2007. View Article : Google Scholar | |
Budni P, Pedrosa RC, Dalmarco EM, Dalmarco JB, Frode TS and Wilhelm Filho D: Carvedilol enhances the antioxidant effect of vitamins E and C in chronic Chagas heart disease. Arq Bras Cardiol. 101:304–310. 2013.PubMed/NCBI | |
Arozal W, Watanabe K, Veeraveedu PT, Ma M, Thandavarayan RA, Sukumaran V, Suzuki K, Kodama M and Aizawa Y: Protective effect of carvedilol on daunorubicin-induced cardiotoxicity and nephrotoxicity in rats. Toxicology. 274:18–26. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arumanayagam M, Chan S, Tong S and Sanderson JE: Antioxidant properties of carvedilol and metoprolol in heart failure: A double-blind randomized controlled trial. J Cardiovasc Pharmacol. 37:48–54. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dandona P, Ghanim H and Brooks DP: Antioxidant activity of carvedilol in cardiovascular disease. J Hypertens. 25:731–741. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li YC, Ge LS, Yang PL, Tang JF, Lin JF, Chen P and Guan XQ: Carvedilol treatment ameliorates acute coxsackievirus B3-induced myocarditis associated with oxidative stress reduction. Eur J Pharmacol. 640:112–116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, Norris MD, Trahair T, Andre N and Kavallaris M: β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 108:2485–2494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Erguven M, Yazihan N, Aktas E, Sabanci A, Li CJ, Oktem G and Bilir A: Carvedilol in glioma treatment alone and with imatinib in vitro. Int J Oncol. 36:857–866. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dezong G, Zhongbing M, Qinye F and Zhigang Y: Carvedilol suppresses migration and invasion of malignant breast cells by inactivating Src involving cAMP/PKA and PKCδ signaling pathway. J Cancer Res Ther. 10:998–1003. 2014. View Article : Google Scholar | |
Chang A, Yeung S, Thakkar A, Huang KM, Liu MM, Kanassatega RS, Parsa C, Orlando R, Jackson EK, Andresen BT, et al: Prevention of skin carcinogenesis by the β-blocker carvedilol. Cancer Prev Res (Phila). 8:27–36. 2015. View Article : Google Scholar | |
Hsieh YD, Chi CC, Chou CT, Cheng JS, Kuo CC, Liang WZ, Lin KL, Tseng LL and Jan CR: Investigation of carvedilolevoked Ca2+ movement and death in human oral cancer cells. J Recept Signal Transduct Res. 31:220–228. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cheng JS, Huang CC, Chou CT and Jan CR: Mechanisms of carvedilol-induced [Ca2+]i rises and death in human hepatoma cells. Naunyn Schmiedebergs Arch Pharmacol. 376:185–194. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cohen DJ and Hochster HS: Rationale for combining biotherapy in the treatment of advanced colon cancer. Gastrointest Cancer Res. 2:145–151. 2008. | |
Patutina OA, Mironova NL, Vlassov VV and Zenkova MA: New approaches for cancer treatment: Antitumor drugs based on gene-targeted nucleic acids. Acta Naturae. 1:44–60. 2009.PubMed/NCBI | |
Siddiqui M and Rajkumar SV: The high cost of cancer drugs and what we can do about it. Mayo Clin Proc. 87:935–943. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tannock IF: Combined modality treatment with radiotherapy and chemotherapy. Radiother Oncol. 16:83–101. 1989. View Article : Google Scholar : PubMed/NCBI | |
Brito AF, Ribeiro M, Abrantes AM, Pires AS, Teixo RJ, Tralhão JG and Botelho MF: Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr Med Chem. 22:3025–3039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mierzwa ML, Nyati MK, Morgan MA and Lawrence TS: Recent advances in combined modality therapy. Oncologist. 15:372–381. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang Y, Zhu Y and Oupický D: Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J Control Release. 172:589–600. 2013. View Article : Google Scholar : PubMed/NCBI | |
Collery P, Mohsen A, Kermagoret A, D'Angelo J, Morgant G, Desmaele D, Tomas A, Collery T, Wei M and Badawi A: Combination of three metals for the treatment of cancer: Gallium, rhenium and platinum. 1. Determination of the optimal schedule of treatment. Anticancer Res. 32:2769–2781. 2012.PubMed/NCBI | |
Law MR, Wald NJ, Morris JK and Jordan RE: Value of low dose combination treatment with blood pressure lowering drugs: Analysis of 354 randomised trials. BMJ. 326:14272003. View Article : Google Scholar : PubMed/NCBI | |
Morton CO, Chau M and Stack C: In vitro combination therapy using low dose clotrimazole and photodynamic therapy leads to enhanced killing of the dermatophyte Trichophyton rubrum. BMC Microbiol. 14:2612014. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol. 96:507–517. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, et al: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health. Oncotarget. 2:135–164. 2011. View Article : Google Scholar : PubMed/NCBI | |
de Araújo RF, de Araújo AA, Pessoa JB, Freire Neto FP, da Silva GR, Leitão Oliveira AL, de Carvalho TG, Silva HF, Eugênio M, Sant'Anna C, et al: Anti-inflammatory, analgesic and anti-tumor properties of gold nanoparticles. Pharmacol Rep. 69:119–129. 2017. View Article : Google Scholar | |
de Araújo Júnior RF, Leitão Oliveira ALC, de Melo Silveira RF, de Oliveira Rocha HA, de França Cavalcanti P and de Araújo AA: Telmisartan induces apoptosis and regulates Bcl-2 in human renal cancer cells. Exp Biol Med (Maywood). 240:34–44. 2015. View Article : Google Scholar | |
Rahman I, Kode A and Biswas SK: Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 1:3159–3165. 2006. View Article : Google Scholar | |
da Costa CM, dos Santos RC and Lima ES: A simple automated procedure for thiol measurement in human serum samples. J Bras Patol Med Lab. 42:345–350. 2006. View Article : Google Scholar | |
Esterbauer H and Cheeseman KH: Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186:407–421. 1990. View Article : Google Scholar : PubMed/NCBI | |
Al-Sheddi ES, Al-Oqail MM, Saquib Q, Siddiqui MA, Musarrat J, Al-Khedhairy AA and Farshori NN: Novel all trans-retinoic Acid derivatives: Cytotoxicity, inhibition of cell cycle progression and induction of apoptosis in human cancer cell lines. Molecules. 20:8181–8197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T and Nishio K: Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci. 98:1275–1280. 2007. View Article : Google Scholar : PubMed/NCBI | |
Świątek Ł, Rajtar B, Pawlak K, Ludwiczuk A, Głowniak K and Polz-Dacewicz M: In vitro evaluation of cytotoxicity of n-hexane extract from Alnus sieboldiana male flowers on VERO and HEK293 cell lines. JPCCR. 7:110–107. 2014. | |
Lapique N and Benenson Y: Digital switching in a biosensor circuit via programmable timing of gene availability. Nat Chem Biol. 10:1020–1027. 2014. View Article : Google Scholar : PubMed/NCBI | |
Selvaraj V, Bodapati S, Murray E, Rice KM, Winston N, Shokuhfar T, Zhao Y and Blough E: Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int J Nanomed. 9:1379–1391. 2014. View Article : Google Scholar | |
Jia J, Zhu F, Ma X, Cao Z, Cao ZW, Li Y, Li YX and Chen YZ: Mechanisms of drug combinations: Interaction and network perspectives. Nat Rev Drug Discov. 8:111–128. 2009. View Article : Google Scholar : PubMed/NCBI | |
Richardson PG, Siegel DS, Vij R, Hofmeister CC, Baz R, Jagannath S, Chen C, Lonial S, Jakubowiak A, Bahlis N, et al: Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: A randomized phase 2 study. Blood. 123:1826–1832. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nijhof IS, Franssen LE, Levin M-D, Bos GMJ, Broijl A, Klein SK, Koene HR, Bloem AC, Beeker A, Faber LM, et al: Phase 1/2 study of lenalidomide combined with low-dose cyclophosphamide and prednisone in lenalidomide-refractory multiple myeloma. Blood. 128:2297–2306. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K and Zubair S: Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int. 2014:4984202014. View Article : Google Scholar : PubMed/NCBI | |
Coelho M, Moz M, Correia G, Teixeira A, Medeiros R and Ribeiro L: Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol Rep. 33:2513–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baharara J, Ramezani T, Divsalar A, Mousavi M and Seyedarabi A: Induction of apoptosis by green synthesized gold nanoparticles Through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J Med Biotechnol. 8:75–83. 2016.PubMed/NCBI | |
Connor EE, Mwamuka J, Gole A, Murphy CJ and Wyatt MD: Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1:325–327. 2005. View Article : Google Scholar | |
Zhao Y, Xu Y, Zhang J and Ji T: Cardioprotective effect of carvedilol: Inhibition of apoptosis in H9c2 cardiomyocytes via the TLR4/NF-κB pathway following ischemia/reperfusion injury. Exp Ther Med. 8:1092–1096. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carvalho Rodrigues MA, Gobe G, Santos NA and Santos AC: Carvedilol protects against apoptotic cell death induced by cisplatin in renal tubular epithelial cells. J Toxicol Environ Health A. 75:981–990. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu SC: Glutathione synthesis. Biochim Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : | |
Townsend DM, Tew KD and Tapiero H: The importance of glutathione in human disease. Biomed Pharmacother. 57:145–155. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kannan K and Jain SK: Oxidative stress and apoptosis. Pathophysiology. 7:153–163. 2000. View Article : Google Scholar : PubMed/NCBI | |
Takahashi A, Masuda A, Sun M, Centonze VE and Herman B: Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull. 62:497–504. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chang WK, Yang KD, Chuang H, Jan JT and Shaio MF: Glutamine protects activated human T cells from apoptosis by up-regulating glutathione and Bcl-2 levels. Clin Immunol. 104:151–160. 2002. View Article : Google Scholar : PubMed/NCBI | |
Estrela JM, Ortega A and Obrador E: Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci. 43:143–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zubairi MB, Ahmed JH and Al-Haroon SS: Effect of adrenergic blockers, carvedilol, prazosin, metoprolol and combination of prazosin and metoprolol on paracetamol-induced hepatotoxicity in rabbits. Indian J Pharmacol. 46:644–648. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sgobbo P, Pacelli C, Grattagliano I, Villani G and Cocco T: Carvedilol inhibits mitochondrial complex I and induces resistance to H2O2-mediated oxidative insult in H9C2 myocardial cells. Biochim Biophys Acta. 1767:222–232. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S and Gurunathan S: Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotech. 8:162010. View Article : Google Scholar | |
Yakimovich NO, Ezhevskii AA, Guseinov DV, Smirnova LA, Gracheva TA and Klychkov KS: Antioxidant properties of gold nanoparticles studied by ESR spectroscopy. Russ Chem Bull. 57:520–523. 2008. View Article : Google Scholar | |
Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR and Grandjean P: Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin Chem. 43:1209–1214. 1997.PubMed/NCBI | |
Gaweł S, Wardas M, Niedworok E and Wardas P: Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 57:453–455. 2004.In Polish. | |
Ho E, Karimi Galougahi K, Liu CC, Bhindi R and Figtree GA: Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 1:483–491. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sangeetha P, Das UN, Koratkar R and Suryaprabha P: Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med. 8:15–19. 1990. View Article : Google Scholar : PubMed/NCBI | |
Esfahani A, Ghoreishi Z, Nikanfar A, Sanaat Z and Ghorbanihaghjo A: Influence of chemotherapy on the lipid peroxidation and antioxidant status in patients with acute myeloid leukemia. Acta Med Iran. 50:454–458. 2012.PubMed/NCBI | |
Cabello CM, Bair WB III and Wondrak GT: Experimental therapeutics: Targeting the redox Achilles heel of cancer. Curr Opin Investig Drugs. 8:1022–1037. 2007.PubMed/NCBI | |
Liou GY and Storz P: Reactive oxygen species in cancer. Free Radic Res. 44:479–496. 2010. View Article : Google Scholar : PubMed/NCBI | |
García M and Vecino E: Vías de señalización intracelular que conducen a la apoptosis de las células de la retina. Arch Soc Esp Oftalmol. 78:351–364. 2003. View Article : Google Scholar | |
Kang MH and Reynolds CP: Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 15:1126–1132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ahmad S, White CW, Chang LY, Schneider BK and Allen CB: Glutamine protects mitochondrial structure and function in oxygen toxicity. Am J Physiol Lung Cell Mol Physiol. 280:L779–L791. 2001. View Article : Google Scholar : PubMed/NCBI | |
Drake J, Sultana R, Aksenova M, Calabrese V and Butterfield DA: Elevation of mitochondrial glutathione by gamma-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J Neurosci Res. 74:917–927. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marí M, Morales A, Colell A, García-Ruiz C and Fernández-Checa JC: Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 11:2685–2700. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Wang F, Yu DF, Wu PF and Chen JG: The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. Eur J Pharmacol. 650:184–194. 2011. View Article : Google Scholar | |
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Kang Y, Xu Z, Zang C, Fang B and Liu X: Dioscin prevents the mitochondrial apoptosis and attenuates oxidative stress in cardiac H9c2 cells. Drug Res (Stuttg). 64:47–52. 2014. | |
Bang S, Jeong EJ, Kim IK, Jung YK and Kim KS: Fas- and tumor necrosis factor-mediated apoptosis uses the same binding surface of FADD to trigger signal transduction. A typical model for convergent signal transduction. J Biol Chem. 275:36217–36222. 2000. View Article : Google Scholar : PubMed/NCBI | |
Osborn SL, Sohn SJ and Winoto A: Constitutive phosphorylation mutation in Fas-associated death domain (FADD) results in early cell cycle defects. J Biol Chem. 282:22786–22792. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xerri L, Devilard E, Bouabdallah R, Stoppa AM, Hassoun J and Birg F: FADD expression and caspase activation in B-cell lymphomas resistant to Fas-mediated apoptosis. Br J Haematol. 106:652–661. 1999. View Article : Google Scholar : PubMed/NCBI | |
Campioni M, Santini D, Tonini G, Murace R, Dragonetti E, Spugnini EP and Baldi A: Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol. 14:811–818. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brazil DP, Yang ZZ and Hemmings BA: Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci. 29:233–242. 2004. View Article : Google Scholar : PubMed/NCBI | |
Daniele S, Costa B, Zappelli E, Da Pozzo E, Sestito S, Nesi G, Campiglia P, Marinelli L, Novellino E, Rapposelli S, et al: Combined inhibition of AKT/mTOR and MDM2 enhances glioblastoma multiforme cell apoptosis and differentiation of cancer stem cells. Sci Rep. 5:99562015. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xin P, Xiao H, Zheng Y, Huang Y and Zhu X: The dual PI3K/mTOR inhibitor NVP-BEZ235 inhibits proliferation and induces apoptosis of burkitt lymphoma cells. Cancer Cell Int. 15:652015. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ruan HJ, Gu PQ, Ding WY, Luo XH, Huang R, Zhao W and Gao LJ: The roles of p38 MAPK and ERK1/2 in coplanar polychlorinated biphenyls-induced apoptosis of human extravillous cytotrophoblast-derived transformed cells. Cell Physiol Biochem. 36:2418–2432. 2015. View Article : Google Scholar : PubMed/NCBI | |
Freudlsperger C, Burnett JR, Friedman JA, Kannabiran VR, Chen Z and Van Waes C: EGFR-PI3K-AKT-mTOR signaling in head and neck squamous cell carcinomas: Attractive targets for molecular-oriented therapy. Expert Opin Ther Targets. 15:63–74. 2011. View Article : Google Scholar | |
Gan Y, Shi C, Inge L, Hibner M, Balducci J and Huang Y: Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene. 29:4947–4958. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK and Batra SK: Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:15–31. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kidger AM and Keyse SM: The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol. 50:125–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Moten A and Lin HK: Akt: A new activation mechanism. Cell Res. 24:785–786. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, Tsou P, Gan W, Papa A, Kim BM, et al: Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature. 508:541–545. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aeder SE, Martin PM, Soh JW and Hussaini IM: PKC-eta mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene. 23:9062–9069. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fan QW, Cheng C, Knight ZA, Haas-Kogan D, Stokoe D, James CD, McCormick F, Shokat KM and Weiss WA: EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal. 2:ra42009. View Article : Google Scholar : PubMed/NCBI | |
Mendoza MC, Er EE and Blenis J: The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, Ye J, Wei Q, Wang J, Zhao L, et al: Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2:13–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
Farabaugh SM, Boone DN and Lee AV: Role of IGF1R in breast cancer subtypes, stemness and lineage differentiation. Front Endocrinol (Lausanne). 6:592015. | |
Kapse-Mistry S, Govender T, Srivastava R and Yergeri M: Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol. 5:1592014.PubMed/NCBI | |
Salomon JJ and Ehrhardt C: Nanoparticles attenuate P-glycoprotein/MDR1 function in A549 human alveolar epithelial cells. Eur J Pharm Biopharm. 77:392–397. 2011. View Article : Google Scholar | |
Callaghan R, Luk F and Bebawy M: Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab Dispos. 42:623–631. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kakumoto M, Sakaeda T, Takara K, Nakamura T, Kita T, Yagami T, Kobayashi H, Okamura N and Okumura K: Effects of carvedilol on MDR1-mediated multidrug resistance: Comparison with verapamil. Cancer Sci. 94:81–86. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wessler JD, Grip LT, Mendell J and Giugliano RP: The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 61:2495–2502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R, Hideshima T and Anderson KC: TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resis-tance in multiple myeloma: Therapeutic applications. Blood. 98:795–804. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Kang B, Qian W, Mackey MA, Chen PC, Oyelere AK, El-Sayed IH and El-Sayed MA: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: Continuous wave or pulsed lasers. J Biomed Opt. 15:0580022010. View Article : Google Scholar : PubMed/NCBI | |
Yang CJ and Chithrani DB: Nuclear targeting of gold nanoparticles for improved therapeutics. Curr Top Med Chem. 16:271–280. 2016. View Article : Google Scholar | |
Kodiha M, Wang YM, Hutter E, Maysinger D and Stochaj U: Off to the organelles - killing cancer cells with targeted gold nanoparticles. Theranostics. 5:357–370. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yanes RE, Tarn D, Hwang AA, Ferris DP, Sherman SP, Thomas CR, Lu J, Pyle AD, Zink JI and Tamanoi F: Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small. 9:697–704. 2013. View Article : Google Scholar | |
Han SO, Xiao K, Kim J, Wu JH, Wisler JW, Nakamura N, Freedman NJ and Shenoy SK: MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound β2-adrenergic receptors. J Cell Biol. 199:817–830. 2012. View Article : Google Scholar : PubMed/NCBI | |
El-Deiry WS: Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ. 8:1066–1075. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sayers TJ: Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother. 60:1173–1180. 2011. View Article : Google Scholar : PubMed/NCBI |