Unfavorable effect of calcitriol and its low-calcemic analogs on metastasis of 4T1 mouse mammary gland cancer
- Authors:
- Artur Anisiewicz
- Agata Pawlik
- Beata Filip-Psurska
- Eliza Turlej
- Stanisław Dzimira
- Magdalena Milczarek
- Katarzyna Gdesz
- Diana Papiernik
- Joanna Jarosz
- Dagmara Kłopotowska
- Andrzej Kutner
- Andrzej Mazur
- Joanna Wietrzyk
-
Affiliations: Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland, Department of Pharmacology, Pharmaceutical Research Institute, 01-793 Warsaw, Poland, Université Clermont Auvergne, INRA, UNH, F-63000 Clermont-Ferrand, France - Published online on: November 2, 2017 https://doi.org/10.3892/ijo.2017.4185
- Pages: 103-126
-
Copyright: © Anisiewicz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cossetti RJD, Tyldesley SK, Speers CH, Zheng Y and Gelmon KA: Comparison of breast cancer recurrence and outcome patterns between patients treated from 1986 to 1992 and from 2004 to 2008. J Clin Oncol. 33:65–73. 2015. View Article : Google Scholar | |
Riemsma R, Forbes CA, Kessels A, Lykopoulos K, Amonkar MM, Rea DW and Kleijnen J: Systematic review of aromatase inhibitors in the first-line treatment for hormone sensitive advanced or metastatic breast cancer. Breast Cancer Res Treat. 123:9–24. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dutta U and Pant K: Aromatase inhibitors: Past, present and future in breast cancer therapy. Med Oncol. 25:113–124. 2008. View Article : Google Scholar | |
Brown SA and Guise TA: Cancer treatment-related bone disease. Crit Rev Eukaryot Gene Expr. 19:47–60. 2009. View Article : Google Scholar : PubMed/NCBI | |
Datta M and Schwartz GG: Calcium and Vitamin D supplementation and loss of bone mineral density in women undergoing breast cancer therapy. Crit Rev Oncol Hematol. 88:613–624. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rizzoli R, Body JJ, Brandi ML, Cannata-Andia J, Chappard D, El Maghraoui A, Glüer CC, Kendler D, Napoli N, Papaioannou A, et al International Osteoporosis Foundation Committee of Scientific Advisors Working Group on Cancer-Induced Bone Disease: Cancer-associated bone disease. Osteoporos Int. 24:2929–2953. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coleman R, Body JJ, Aapro M and Hadji P: Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 25(Suppl 3): iii124–iii137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Coleman RE, Rathbone E and Brown JE: Management of cancer treatment-induced bone loss. Nat Rev Rheumatol. 9:365–374. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cepa M and Vaz C: Management of bone loss in postmenopausal breast cancer patients treated with aromatase inhibitors. Acta Reumatol Port. 40:323–330. 2015. | |
Hant FN and Bolster MB: Drugs that may harm bone: Mitigating the risk. Cleve Clin J Med. 83:281–288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brant J: Vitamin D in the prevention of aromatase inhibitor-induced musculoskeletal symptoms: Is it ready for practice? J Adv Pract Oncol. 3:245–248. 2012.PubMed/NCBI | |
Jacobs ET, Kohler LN, Kunihiro AG and Jurutka PW: Vitamin D and colorectal, breast, and prostate cancers: A review of the epidemiological evidence. J Cancer. 7:232–240. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feldman D, Krishnan AV, Swami S, Giovannucci E and Feldman BJ: The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 14:342–357. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jacot W, Pouderoux S, Thezenas S, Chapelle A, Bleuse JP, Romieu G and Lamy PJ: Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat. 134:709–717. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singer O, Cigler T, Moore AB, Levine AB, Do HT and Mandl LA: Hypovitaminosis D is a predictor of aromatase inhibitor musculoskeletal symptoms. Breast J. 20:174–179. 2014. View Article : Google Scholar : PubMed/NCBI | |
LaPorta E and Welsh J: Modeling vitamin D actions in triple negative/basal-like breast cancer. J Steroid Biochem Mol Biol. 144A:65–73. 2014. View Article : Google Scholar | |
Peppone LJ, Rickles AS, Janelsins MC, Insalaco MR and Skinner KA: The association between breast cancer prognostic indicators and serum 25-OH vitamin D levels. Ann Surg Oncol. 19:2590–2599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ness RA, Miller DD and Li W: The role of vitamin D in cancer prevention. Chin J Nat Med. 13:481–497. 2015.PubMed/NCBI | |
Horst R, Prapong S, Reinhardt T, Koszewski N, Knutson J and Bishop C: Comparison of the relative effects of 1,24-dihydroxyvitamin D(2) [1,24-(OH)(2)D(2)], 1,24-dihydroxyvitamin D(3) [1,24-(OH)(2)D(3)], and 1,25-dihydroxyvitamin D(3) [1,25-(OH) (2)D(3)] on selected vitamin D-regulated events in the rat. Biochem Pharmacol. 60:701–708. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wietrzyk J, Pełczyńska M, Madej J, Dzimira S, Kuśnierczyk H, Kutner A, Szelejewski W and Opolski A: Toxicity and antineoplastic effect of (24R)-1,24-dihydroxyvitamin D3 (PRI-2191). Steroids. 69:629–635. 2004. View Article : Google Scholar : PubMed/NCBI | |
Milczarek M, Filip-Psurska B, Swiętnicki W, Kutner A and Wietrzyk J: Vitamin D analogs combined with 5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep. 32:491–504. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wietrzyk J, Chodyński M, Fitak H, Wojdat E, Kutner A and Opolski A: Antitumor properties of diastereomeric and geometric analogs of vitamin D3. Anticancer Drugs. 18:447–457. 2007. View Article : Google Scholar : PubMed/NCBI | |
Milczarek M, Chodyński M, Filip-Psurska B, Martowicz A, Krupa M, Krajewski K, Kutner A and Wietrzyk J: Synthesis and biological activity of diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, against human HL-60 leukemia and MCF-7 breast cancer cells. Cancers (Basel). 5:1355–1378. 2013. View Article : Google Scholar | |
Filip B, Milczarek M, Wietrzyk J, Chodyński M and Kutner A: Antitumor properties of (5e,7e) analogs of vitamin D3. J Steroid Biochem Mol Biol. 121:399–402. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hisatake J, Kubota T, Hisatake Y, Uskokovic M, Tomoyasu S and Koeffler HP: 5,6-trans-16-ene-vitamin D3: A new class of potent inhibitors of proliferation of prostate, breast, and myeloid leukemic cells. Cancer Res. 59:4023–4029. 1999.PubMed/NCBI | |
Opolski A, Wietrzyk J, Siwinska A, Marcinkowska E, Chrobak A, Radzikowski C and Kutner A: Biological activity in vitro of side-chain modified analogues of calcitriol. Curr Pharm Des. 6:755–765. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wietrzyk J, Nevozhay D, Filip B, Milczarek M and Kutner A: The antitumor effect of lowered doses of cytostatics combined with new analogs of vitamin D in mice. Anticancer Res. 27A:3387–3398. 2007. | |
Wietrzyk J, Milczarek M and Kutner A: The effect of combined treatment on head and neck human cancer cell lines with novel analogs of calcitriol and cytostatics. Oncol Res. 16:517–525. 2007. View Article : Google Scholar | |
Wietrzyk J, Nevozhay D, Milczarek M, Filip B and Kutner A: Toxicity and antitumor activity of the vitamin D analogs PRI-1906 and PRI-1907 in combined treatment with cyclophosphamide in a mouse mammary cancer model. Cancer Chemother Pharmacol. 62:787–797. 2008. View Article : Google Scholar : PubMed/NCBI | |
Milczarek M, Psurski M, Kutner A and Wietrzyk J: Vitamin D analogs enhance the anticancer activity of 5-fluorouracil in an in vivo mouse colon cancer model. BMC Cancer. 13:2942013. View Article : Google Scholar : PubMed/NCBI | |
Maj E, Filip-Psurska B, Świtalska M, Kutner A and Wietrzyk J: Vitamin D analogs potentiate the antitumor effect of imatinib mesylate in a human A549 lung tumor model. Int J Mol Sci. 16:27191–27207. 2015. View Article : Google Scholar : PubMed/NCBI | |
Blazejczyk A, Papiernik D, Porshneva K, Sadowska J and Wietrzyk J: Endothelium and cancer metastasis: Perspectives for antimetastatic therapy. Pharmacol Rep. 67:711–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chodyński M, Wietrzyk J, Marcinkowska E, Opolski A, Szelejewski W and Kutner A: Synthesis and antiproliferative activity of side-chain unsaturated and homologated analogs of 1,25-dihydroxyvitamin D(2). (24E)-(1s)-24-Dehydro-24a-homo-1,25-dihydroxyergocalciferol and congeners. Steroids. 67:789–798. 2002. View Article : Google Scholar | |
DuPré SA, Redelman D and Hunter KW Jr: The mouse mammary carcinoma 4T1: Characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol. 88:351–360. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nevozhay D: Cheburator software for automatically calculating drug inhibitory concentrations from in vitro screening assays. PLoS One. 9:e1061862014. View Article : Google Scholar : PubMed/NCBI | |
Wenzel J, Zeisig R and Fichtner I: Inhibition of metastasis in a murine 4T1 breast cancer model by liposomes preventing tumor cell-platelet interactions. Clin Exp Metastasis. 27:25–34. 2010. View Article : Google Scholar | |
DuPre' SA and Hunter KW Jr: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: Association with tumor-derived growth factors. Exp Mol Pathol. 82:12–24. 2007. View Article : Google Scholar | |
Banka CL, Lund CV, Nguyen MTN, Pakchoian AJ, Mueller BM and Eliceiri BP: Estrogen induces lung metastasis through a host compartment-specific response. Cancer Res. 66:3667–3672. 2006. View Article : Google Scholar : PubMed/NCBI | |
MacRitchie AN, Jun SS, Chen Z, German Z, Yuhanna IS, Sherman TS and Shaul PW: Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ Res. 81:355–362. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Belosay A, Du M, Fan TM, Turner RT, Iwaniec UT and Helferich WG: Estradiol increases ER-negative breast cancer metastasis in an experimental model. Clin Exp Metastasis. 30:711–721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garcia CM de S, de Araújo MR, Lopes MTP, Ferreira MAND and Cassali GD: Morphological and immunophenotipical characterization of murine mammary carcinoma 4t1. Braz J Vet Pathol. 7:158–165. 2014. | |
Mi Z, Guo H, Wai PY, Gao C, Wei J and Kuo PC: Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior. J Biol Chem. 279:46659–46667. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sangaletti S, Tripodo C, Sandri S, Torselli I, Vitali C, Ratti C, Botti L, Burocchi A, Porcasi R, Tomirotti A, et al: Osteopontin shapes immunosuppression in the metastatic niche. Cancer Res. 74:4706–4719. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pang H, Lu H, Song H, Meng Q, Zhao Y, Liu N, Lan F, Liu Y, Yan S, Dong X, et al: Prognostic values of osteopontin-c, E-cadherin and β-catenin in breast cancer. Cancer Epidemiol. 37:985–992. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang P-L, Harkins L, Hsieh Y-H, Hicks P, Sappayatosok K, Yodsanga S, Swasdison S, Chambers AF, Elmets CA and Ho KJ: Osteopontin expression in normal skin and non-melanoma skin tumors. J Histochem Cytochem. 56:57–66. 2008. View Article : Google Scholar | |
Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O and Hölttä E: Osteopontin promotes the invasive growth of melanoma cells by activating integrin αvβ3 and down-regulating tetraspanin CD9. Am J Pathol. 184:842–858. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, Llamas-Gutierrez F, Meunier B, Boudjema K, Clément B, et al: Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology. 58:1992–2000. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pang H, Cai L, Yang Y, Chen X, Sui G and Zhao C: Knockdown of osteopontin chemosensitizes MDA-MB-231 cells to cyclophosphamide by enhancing apoptosis through activating p38 MAPK pathway. Cancer Biother Radiopharm. 26:165–173. 2011. View Article : Google Scholar : PubMed/NCBI | |
Denhardt DT, Noda M, O'Regan AW, Pavlin D and Berman JS: Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 107:1055–1061. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kon S, Nakayama Y, Matsumoto N, Ito K, Kanayama M, Kimura C, Kouro H, Ashitomi D, Matsuda T and Uede T: A novel cryptic binding motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved osteopontin as a novel ligand for α9β1 integrin is involved in the anti-type II collagen antibody-induced arthritis. PLoS One. 9:e1162102014. View Article : Google Scholar | |
Barry ST, Ludbrook SB, Murrison E and Horgan CM: A regulated interaction between alpha5beta1 integrin and osteopontin. Biochem Biophys Res Commun. 267:764–769. 2000. View Article : Google Scholar : PubMed/NCBI | |
Helluin O, Chan C, Vilaire G, Mousa S, DeGrado WF and Bennett JS: The activation state of alphavbeta 3 regulates platelet and lymphocyte adhesion to intact and thrombin-cleaved osteopontin. J Biol Chem. 275:18337–18343. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kale S, Raja R, Thorat D, Soundararajan G, Patil TV and Kundu GC: Osteopontin signaling upregulates cyclooxy-genase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene. 33:2295–2306. 2014. View Article : Google Scholar | |
Raja R, Kale S, Thorat D, Soundararajan G, Lohite K, Mane A, Karnik S and Kundu GC: Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1α-mediated VEGF-dependent angiogenesis. Oncogene. 33:2053–2064. 2014. View Article : Google Scholar | |
Noda M, Vogel RL, Craig AM, Prahl J, DeLuca HF and Denhardt DT: Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl Acad Sci USA. 87:9995–9999. 1990. View Article : Google Scholar : PubMed/NCBI | |
Xu H, McCann M, Zhang Z, Posner GH, Bingham V, El-Tanani M and Campbell FC: Vitamin D receptor modulates the neoplastic phenotype through antagonistic growth regulatory signals. Mol Carcinog. 48:758–772. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW and Giachelli CM: Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 82:1261–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Zhou H, Gao H, Liu Y, Yan T, Zou L and Chen L: IFN-γ inhibits osteopontin expression in human decidual stromal cells and can be attenuated by 1α,25-dihydroxyvitamin D3. Am J Reprod Immunol. 68:353–361. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang PL, Ridall AL and Prince CW: Calcitriol regulation of osteopontin expression in mouse epidermal cells. Endocrinology. 135:863–869. 1994. View Article : Google Scholar : PubMed/NCBI | |
Chang PL and Prince CW: 1α,25-dihydroxyvitamin D3 stimulates synthesis and secretion of nonphosphorylated osteopontin (secreted phosphoprotein 1) in mouse JB6 epidermal cells. Cancer Res. 51:2144–2150. 1991.PubMed/NCBI | |
Blomberg Jensen M, Jørgensen A, Nielsen JE, Steinmeyer A, Leffers H, Juul A and Rajpert-De Meyts E: Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo. Neoplasia. 14:952–963. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty G, Jain S and Kundu GC: Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res. 68:152–161. 2008. View Article : Google Scholar : PubMed/NCBI | |
Das S, Samant RS and Shevde LA: Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to smoothened-targeting Hedgehog inhibition. J Biol Chem. 288:11824–11833. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shevde LA and Samant RS: Role of osteopontin in the pathophysiology of cancer. Matrix Biol. 37:131–141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RS, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL, et al: Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech. 8:237–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Xiao C-H, Tan L-D, Wang Q-S, Li X-Q and Feng Y-M: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 110:724–732. 2014. View Article : Google Scholar | |
Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, et al: Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 165:35–52. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maj E, Papiernik D and Wietrzyk J: Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol. 49:1773–1784. 2016.PubMed/NCBI | |
Molin DGM, van den Akker NM and Post MJ: Affirmative action of osteopontin on endothelial progenitors. Arterioscler Thromb Vasc Biol. 28:2099–2100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Leen LLS, Filipe C, Billon A, Garmy-Susini B, Jalvy S, Robbesyn F, Daret D, Allières C, Rittling SR, Werner N, et al: Estrogen-stimulated endothelial repair requires osteopontin. Arterioscler Thromb Vasc Biol. 28:2131–2136. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pepper MS: Transforming growth factor-beta: Vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8:21–43. 1997. View Article : Google Scholar : PubMed/NCBI | |
Costanza B, Umelo IA, Bellier J, Castronovo V and Turtoi A: Stromal modulators of TGF-β in cancer. J Clin Med. 6:72017. View Article : Google Scholar | |
Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Böttinger EP, Chen Y, Zhu HJ, Kang DH, Schreiner GF, et al: TGF-β induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int. 66:605–613. 2004. View Article : Google Scholar : PubMed/NCBI | |
Orlova VV, Liu Z, Goumans M-J and ten Dijke P: Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histol Histopathol. 26:1219–1230. 2011.PubMed/NCBI | |
Goumans M-J, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P and ten Dijke P: Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 21:1743–1753. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khan Z and Marshall JF: The role of integrins in TGFβ activation in the tumour stroma. Cell Tissue Res. 365:657–673. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takai K, Le A, Weaver VM and Werb Z: Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 7:82889–82901. 2016.PubMed/NCBI | |
Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T and Erez N: Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 75:963–973. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, Franzen CA, Gupta GN, Osipo C, Zlobin A, et al: Osteopontin mediates an MzF1-TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene. 34:4821–4833. 2015. View Article : Google Scholar | |
Koli K and Keski-Oja J: 1,25-Dihydroxyvitamin D3 enhances the expression of transforming growth factor beta 1 and its latent form binding protein in cultured breast carcinoma cells. Cancer Res. 55:1540–1546. 1995.PubMed/NCBI | |
Shany S, Sigal-Batikoff I and Lamprecht S: Vitamin D and myofibroblasts in fibrosis and cancer: At cross-purposes with TGF-β/SMAD signaling. Anticancer Res. 36:6225–6234. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tao Q, Wang B, Zheng Y, Jiang X, Pan Z and Ren J: Vitamin D prevents the intestinal fibrosis via induction of vitamin D receptor and inhibition of transforming growth factor-beta1/Smad3 pathway. Dig Dis Sci. 60:868–875. 2015. View Article : Google Scholar | |
Ivanović V, Demajo M, Krtolica K, Krajnović M, Konstantinović M, Baltić V, Prtenjak G, Stojiljković B, Breberina M, Nesković-Konstantinović Z, et al: Elevated plasma TGF-β1 levels correlate with decreased survival of metastatic breast cancer patients. Clin Chim Acta. 371:191–193. 2006. View Article : Google Scholar | |
Moo-Young TA, Larson JW, Belt BA, Tan MC, Hawkins WG, Eberlein TJ, Goedegebuure PS and Linehan DC: Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J Immunother. 32:12–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gong D, Shi W, Yi SJ, Chen H, Groffen J and Heisterkamp N: TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13:312012. View Article : Google Scholar | |
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wculek SK and Malanchi I: Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 528:413–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cho HJ, Jung JI, Lim DY, Kwon GT, Her S, Park JH and Park JHY: Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast Cancer Res. 14:R812012. View Article : Google Scholar : PubMed/NCBI | |
Adams LS and Teegarden D: 1,25-dihydroxycholecalciferol inhibits apoptosis in C3H10T1/2 murine fibroblast cells through activation of nuclear factor kappaB. J Nutr. 134:2948–2952. 2004.PubMed/NCBI | |
Cohen-Lahav M, Shany S, Tobvin D, Chaimovitz C and Douvdevani A: Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant. 21:889–897. 2006. View Article : Google Scholar : PubMed/NCBI | |
Williams JD, Aggarwal A, Swami S, Krishnan AV, Ji L, Albertelli MA and Feldman BJ: Tumor autonomous effects of Vitamin D deficiency promote breast cancer metastasis. Endocrinology. 157:1341–1347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aslakson CJ and Miller FR: Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52:1399–1405. 1992.PubMed/NCBI | |
Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT, Sukenick G, Locasale JW, Blasberg RG, Koutcher JA, et al: Metabolic plasticity of metastatic breast cancer cells: Adaptation to changes in the microenvironment. Neoplasia. 17:671–684. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meyer MB, Benkusky NA, Kaufmann M, Lee SM, Onal M, Jones G and Pike JW: A Kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D 3 activation. J Biol Chem. 2017 Aug 14–2017.Epub ahead of print. View Article : Google Scholar | |
Anderson PH: Vitamin D activity and metabolism in bone. Curr Osteoporos Rep. 15:443–449. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marik R, Fackler M, Gabrielson E, Zeiger MA, Sukumar S, Stearns V and Umbricht CB: DNA methylation-related vitamin D receptor insensitivity in breast cancer. Cancer Biol Ther. 10:44–53. 2010. View Article : Google Scholar : PubMed/NCBI | |
Banwell CM, O'Neill LP, Uskokovic MR and Campbell MJ: Targeting 1α,25-dihydroxyvitamin D3 antiproliferative insensitivity in breast cancer cells by co-treatment with histone deacetylation inhibitors. J Steroid Biochem Mol Biol. 89–90:245–249. 2004. View Article : Google Scholar | |
Khanim FL, Gommersall LM, Wood VHJ, Smith KL, Montalvo L, O'Neill LP, Xu Y, Peehl DM, Stewart PM, Turner BM, et al: Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene. 23:6712–6725. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhi H-Y, Hou S-W, Li R-S, Basir Z, Xiang Q, Szabo A and Chen G: PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization. Oncogene. 30:1706–1715. 2011. View Article : Google Scholar : | |
Krishnan AV, Swami S and Feldman D: Equivalent anticancer activities of dietary vitamin D and calcitriol in an animal model of breast cancer: Importance of mammary CYP27B1 for treatment and prevention. J Steroid Biochem Mol Biol. 136:289–295. 2013. View Article : Google Scholar : | |
Swami S, Krishnan AV, Wang JY, Jensen K, Horst R, Albertelli MA and Feldman D: Dietary vitamin D3 and 1,25-dihydroxyvitamin D3 (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer. Endocrinology. 153:2576–2587. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jeong Y, Swami S, Krishnan AV, Williams JD, Martin S, Horst RL, Albertelli MA, Feldman BJ, Feldman D and Diehn M: Inhibition of mouse breast tumor-initiating cells by calcitriol and dietary vitamin D. Mol Cancer Ther. 14:1951–1961. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rossdeutscher L, Li J, Luco A-L, Fadhil I, Ochietti B, Camirand A, Huang DC, Reinhardt TA, Muller W and Kremer R: Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PYMT mouse model of breast cancer. Cancer Prev Res (Phila). 8:120–128. 2015. View Article : Google Scholar | |
Ooi LL, Zhou H, Kalak R, Zheng Y, Conigrave AD, Seibel MJ and Dunstan CR: Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis. Cancer Res. 70:1835–1844. 2010. View Article : Google Scholar : PubMed/NCBI |