The biology and function of extracellular vesicles in nasopharyngeal carcinoma (Review)
- Authors:
- Bo You
- Ying Shan
- Lili Bao
- Jing Chen
- Liu Yang
- Qicheng Zhang
- Wei Zhang
- Zhenxin Zhang
- Jie Zhang
- Si Shi
- Yiwen You
-
Affiliations: Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China - Published online on: November 10, 2017 https://doi.org/10.3892/ijo.2017.4202
- Pages: 38-46
This article is mentioned in:
Abstract
Frühbeis C, Fröhlich D and Krämer-Albers EM: Emerging roles of exosomes in neuron-glia communication. Front Physiol. 3:1192012. View Article : Google Scholar : PubMed/NCBI | |
Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Möbius W, Goebbels S, Nave KA, et al: Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 11:e10016042013. View Article : Google Scholar : PubMed/NCBI | |
Abels ER and Breakefield XO: Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 36:301–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Syn N, Wang L, Sethi G, Thiery JP and Goh BC: Exosome-mediated metastasis: From epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 37:606–617. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zaborowski MP, Balaj L, Breakefield XO and Lai CP: Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience. 65:783–797. 2015. View Article : Google Scholar | |
Grant R, Ansa-Addo E, Stratton D, Antwi-Baffour S, Jorfi S, Kholia S, Krige L, Lange S and Inal J: A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods. 371:143–151. 2011. View Article : Google Scholar : PubMed/NCBI | |
Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, Chalmers RT, Webb DJ and Dear JW: Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 10:52012. View Article : Google Scholar : PubMed/NCBI | |
Pisitkun T, Shen RF and Knepper MA: Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 101:13368–13373. 2004. View Article : Google Scholar : PubMed/NCBI | |
Prado N, Marazuela EG, Segura E, Fernández-García H, Villalba M, Théry C, Rodríguez R and Batanero E: Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol. 181:1519–1525. 2008. View Article : Google Scholar : PubMed/NCBI | |
Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G and Altevogt P: Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 107:563–571. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M, et al: Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 34:13–23. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TA and Stoorvogel W: Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod. 86:822012. View Article : Google Scholar | |
Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, et al: Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 360:295–305. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rak J and Guha A: Extracellular vesicles - vehicles that spread cancer genes. BioEssays. 34:489–497. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW and Wall NR: Survivin is released from cancer cells via exosomes. Apoptosis. 16:1–12. 2011. View Article : Google Scholar : | |
Dutta S, Warshall C, Bandyopadhyay C, Dutta D and Chandran B: Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PLoS One. 9:e975802014. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, et al: BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 123:1542–1555. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shi S, Zhang Q, Xia Y, You B, Shan Y, Bao L, Li L, You Y and Gu Z: Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res. 6:459–472. 2016.PubMed/NCBI | |
Colombo M, Raposo G and Théry C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tkach M and Théry C: Communication by extracellular vesicles: Where we are and where we need to go. Cell. 164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mathivanan S, Ji H and Simpson RJ: Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martins VR, Dias MS and Hainaut P: Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol. 25:66–75. 2013. View Article : Google Scholar | |
Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taylor DD, Zacharias W and Gercel-Taylor C: Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 728:235–246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Momen-Heravi F, Balaj L, Alian S, Tigges J, Toxavidis V, Ericsson M, Distel RJ, Ivanov AR, Skog J and Kuo WP: Alternative methods for characterization of extracellular vesicles. Front Physiol. 3:3542012. View Article : Google Scholar : PubMed/NCBI | |
Al-Nedawi K, Meehan B and Rak J: Microvesicles: Messengers and mediators of tumor progression. Cell Cycle. 8:2014–2018. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia. 20:1487–1495. 2006. View Article : Google Scholar : PubMed/NCBI | |
Azmi AS, Bao B and Sarkar FH: Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, Zhong SL, Tang JH and Zhao JH: Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 106:959–964. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robinson SM, Fan L, White SA, Charnley RM and Mann J: The role of exosomes in the pathogenesis of pancreatic ductal adenocarcinoma. Int J Biochem Cell Biol. 75:131–139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kahlert C and Kalluri R: Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 91:431–437. 2013. View Article : Google Scholar | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
Funasaka T and Raz A: The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev. 26:725–735. 2007. View Article : Google Scholar : PubMed/NCBI | |
Funasaka T and Wong RW: The role of nuclear pore complex in tumor microenvironment and metastasis. Cancer Metastasis Rev. 30:239–251. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK, Roh TY and Gho YS: Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One. 9:e1151702014. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, Shi L, Lu X, Xu W, Lu L, et al: STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370:125–135. 2016. View Article : Google Scholar | |
Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SIJ, et al: In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 161:1046–1057. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fleury A, Martinez MC and Le Lay S: Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 5:3702014. View Article : Google Scholar : PubMed/NCBI | |
Kosaka N: Decoding the secret of cancer by means of extracellular vesicles. J Clin Med. 5:52016. View Article : Google Scholar | |
Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F and Ochiya T: Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 288:10849–10859. 2013. View Article : Google Scholar : PubMed/NCBI | |
You B, Cao X, Shao X, Ni H, Shi S, Shan Y, Gu Z and You Y: Clinical and biological significance of HAX-1 overexpression in nasopharyngeal carcinoma. Oncotarget. 7:12505–12524. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clayton A, Al-Taei S, Webber J, Mason MD and Tabi Z: Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol. 187:676–683. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ and Whiteside TL: Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 183:3720–3730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H and McCauley LK: Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem. 289:24560–24572. 2014. View Article : Google Scholar : PubMed/NCBI | |
Whitehead B, Wu L, Hvam ML, Aslan H, Dong M, Dyrskjøt L, Ostenfeld MS, Moghimi SM and Howard KA: Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: Implications in endothelial leakiness. J Extracell Vesicles. 4:296852015. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu Y and Feng J: Exosomes: Decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One. 9:e895342014. View Article : Google Scholar : PubMed/NCBI | |
Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, Ji MH, Hu Q, Luo Z, Wu JZ, et al: Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One. 9:e952402014. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Chen X, Wang D, Zhang X, Shen H, Yang S, Lv M, Tang J and Zhao J: MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget. 7:19601–19609. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu DD, Wu Y, Zhang XH, Lv MM, Chen WX, Chen X, Yang SJ, Shen H, Zhong SL, Tang JH, et al: Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol. 37:3227–3235. 2016. View Article : Google Scholar | |
Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J, et al: Docetaxel-resistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 7:e509992012. View Article : Google Scholar : PubMed/NCBI | |
Brinton LT, Sloane HS, Kester M and Kelly KA: Formation and role of exosomes in cancer. Cell Mol Life Sci. 72:659–671. 2015. View Article : Google Scholar | |
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al: Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 4:270662015. View Article : Google Scholar : PubMed/NCBI | |
Silva M and Melo SA: Non-coding RNAs in exosomes: New players in cancer biology. Curr Genomics. 16:295–303. 2015. View Article : Google Scholar | |
Guan M, Chen X, Ma Y, Tang L, Guan L, Ren X, Yu B, Zhang W and Su B: MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biol. 36:2973–2982. 2015. View Article : Google Scholar | |
Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB and Morin PJ: Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer. 9:2442009. View Article : Google Scholar : PubMed/NCBI | |
Fujita Y, Kuwano K, Ochiya T and Takeshita F: The impact of extracellular vesicle-encapsulated circulating microRNAs in lung cancer research. BioMed Res Int. 2014:4864132014. View Article : Google Scholar : PubMed/NCBI | |
Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN and Pass HI: microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 8:1156–1162. 2013. View Article : Google Scholar : PubMed/NCBI | |
Madhavan B, Yue S, Galli U, Rana S, Gross W, Müller M, Giese NA, Kalthoff H, Becker T, Büchler MW, et al: Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 136:2616–2627. 2015. View Article : Google Scholar | |
Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, Kuslich C, Visakorpi T and Hamdy FC: Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 106:768–774. 2012. View Article : Google Scholar : PubMed/NCBI | |
Manterola L, Guruceaga E, Gállego Pérez-Larraya J, González-Huarriz M, Jauregui P, Tejada S, Diez-Valle R, Segura V, Samprón N, Barrena C, et al: A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 16:520–527. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, et al: Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 9:e929212014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Sun H, Wang X, Yu Q, Li S, Yu X and Gong W: Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 15:758–773. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hiltbrunner S, Larssen P, Eldh M, Martinez-Bravo MJ, Wagner AK, Karlsson MC and Gabrielsson S: Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget. 7:38707–38717. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rafi MA and Omidi Y: A prospective highlight on exosomal nanoshuttles and cancer immunotherapy and vaccination. Bioimpacts. 5:117–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Luo CL, He BC, Zhang JM, Cheng G and Wu XH: Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: A novel vaccine for renal cell carcinoma. Int J Oncol. 36:133–140. 2010. | |
Pashoutan Sarvar D, Shamsasenjan K and Akbarzadehlaleh P: Mesenchymal stem cell-derived exosomes: New opportunity in cell-free therapy. Adv Pharm Bull. 6:293–299. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lou G, Song X, Yang F, Wu S, Wang J, Chen Z and Liu Y: Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 8:1222015. View Article : Google Scholar : PubMed/NCBI | |
Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S and Ochi M: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 445:381–387. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brennan B: Nasopharyngeal carcinoma. Orphanet J Rare Dis. 1:232006. View Article : Google Scholar : PubMed/NCBI | |
Lee AW, Yau TK, Wong DH, Chan EW, Yeung RM, Ng WT, Tong M, Soong IS and Sze WM: Treatment of stage IV(A-B) nasopharyngeal carcinoma by induction-concurrent chemoradiotherapy and accelerated fractionation. Int J Radiat Oncol Biol Phys. 63:1331–1338. 2005. View Article : Google Scholar : PubMed/NCBI | |
Strazzulla A, Barreca GS, Giancotti A, Pisani V, Costa C, Zicca E, La Boria A, Roveda L, Liberto MC, Tucci L, et al: Nasopharyngeal carcinoma: Review of the literature with a focus on therapeutical implications. Infez Med. 23:224–229. 2015.PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sonnenschein C and Soto AM: The death of the cancer cell. Cancer Res. 71:4334–4337. 2011. View Article : Google Scholar : PubMed/NCBI | |
Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS and Jones JG: Tumor microenvironment of metastasis in human breast carcinoma: A potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res. 15:2433–2441. 2009. View Article : Google Scholar : PubMed/NCBI | |
Redon CE, Dickey JS, Nakamura AJ, Kareva IG, Naf D, Nowsheen S, Kryston TB, Bonner WM, Georgakilas AG and Sedelnikova OA: Tumors induce complex DNA damage in distant proliferative tissues in vivo. Proc Natl Acad Sci USA. 107:17992–17997. 2010. View Article : Google Scholar : PubMed/NCBI | |
Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL, Swetter SM, Carlson RW, Fisher GA, Koong A, et al: Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci USA. 106:9010–9015. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gourzones C, Barjon C and Busson P: Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol. 22:127–136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Salem HK and Thiemermann C: Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells. 28:585–596. 2010. | |
Droujinine IA, Eckert MA and Zhao W: To grab the stroma by the horns: From biology to cancer therapy with mesenchymal stem cells. Oncotarget. 4:651–664. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula VL, Weil M, Andreeff M and Marini FC: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells. 27:2614–2623. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vlassov AV, Magdaleno S, Setterquist R and Conrad R: Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 1820:940–948. 2012. View Article : Google Scholar : PubMed/NCBI | |
Du T, Ju G, Wu S, Cheng Z, Cheng J, Zou X, Zhang G, Miao S, Liu G and Zhu Y: Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One. 9:e968362014. View Article : Google Scholar : PubMed/NCBI | |
Yeh SH, Liu RS, Wu LC, Yang DJ, Yen SH, Chang CW, Yu TW, Chou KL and Chen KY: Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med. 23:1378–1383. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zheng YJ, Fan W, Zhao C, Yang XC, Cui NJ and Chen FJ: Clinical application of 99mTc-HL91 hypoxia imaging in nasopharyngeal carcinoma. Ai Zheng. 25:378–381. 2006.In Chinese. PubMed/NCBI | |
Zheng YJ, Zhao C, Fan W, Liu H, Cui NJ and Chen FJ: Changes of hypoxia in primary lesion of nasopharyngeal carcinoma during the treatment course and the clinical value thereof. Zhonghua Yi Xue Za Zhi. 87:2698–2702. 2007.In Chinese. | |
Hong B, Lui VWY, Hashiguchi M, Hui EP and Chan ATC: Targeting tumor hypoxia in nasopharyngeal carcinoma. Head Neck. 35:133–145. 2013. View Article : Google Scholar | |
Janssen HL, Haustermans KM, Balm AJ and Begg AC: Hypoxia in head and neck cancer: How much, how important? Head Neck. 27:622–638. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yang X, Yang Y, Zhu H, Chen X, Zhang H, Wang F, Qin Q, Cheng H and Sun X: Exosomes: A promising factor involved in cancer hypoxic microenvironments. Curr Med Chem. 22:4189–4195. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhu H, Ge Y, Liu J, Cai J, Qin Q, Zhan L, Zhang C, Xu L, Liu Z, et al: Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1α. Tumour Biol. 35:10443–10448. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK and Sze SK: Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 9:1085–1099. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS and Shackelford J: Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 33:4613–4622. 2014. View Article : Google Scholar : PubMed/NCBI | |
You Y, Shan Y, Chen J, Yue H, You B, Shi S, Li X and Cao X: Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci. 106:1669–1677. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ferradini L, Miescher S, Stoeck M, Busson P, Barras C, Cerf-Bensussan N, Lipinski M, von Fliedner V and Tursz T: Cytotoxic potential despite impaired activation pathways in T lymphocytes infiltrating nasopharyngeal carcinoma. Int J Cancer. 47:362–370. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX and Li J: Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 5:5439–5452. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mrizak D, Martin N, Barjon C, Jimenez-Pailhes AS, Mustapha R, Niki T, Guigay J, Pancré V, de Launoit Y, Busson P, et al: Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst. 107:3632014.PubMed/NCBI | |
Simmen T: Hax-1: A regulator of calcium signaling and apoptosis progression with multiple roles in human disease. Expert Opin Ther Targets. 15:741–751. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fadeel B and Grzybowska E: HAX-1: A multifunctional protein with emerging roles in human disease. Biochim Biophys Acta. 1790:1139–1148. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sharp TV, Wang HW, Koumi A, Hollyman D, Endo Y, Ye H, Du MQ and Boshoff C: K15 protein of Kaposi's sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J Virol. 76:802–816. 2002. View Article : Google Scholar | |
Lee AY, Lee Y, Park YK, Bae KH, Cho S, Lee DH, Park BC, Kang S and Park SG: HS 1-associated protein X-1 is cleaved by caspase-3 during apoptosis. Mol Cells. 25:86–90. 2008.PubMed/NCBI | |
Vafiadaki E, Arvanitis DA, Pagakis SN, Papalouka V, Sanoudou D, Kontrogianni-Konstantopoulos A and Kranias EG: The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell. 20:306–318. 2009. View Article : Google Scholar : | |
Al-Maghrebi M, Brulé H, Padkina M, Allen C, Holmes WM and Zehner ZE: The 3′ untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1 gamma and HAX-1. Nucleic Acids Res. 30:5017–5028. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sarnowska E, Grzybowska EA, Sobczak K, Konopinski R, Wilczynska A, Szwarc M, Sarnowski TJ, Krzyzosiak WJ and Siedlecki JA: Hairpin structure within the 3′UTR of DNA polymerase beta mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res. 35:5499–5510. 2007. View Article : Google Scholar : | |
Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S, Weinreb P, Hart IR and Marshall JF: HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res. 67:5275–5284. 2007. View Article : Google Scholar : PubMed/NCBI | |
Radhika V, Onesime D, Ha JH and Dhanasekaran N: Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem. 279:49406–49413. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhang W, Kondo K, Klco JM, Martin TB St, Dufault MR, Madden SL, Kaelin WG Jr and Nacht M: Gene expression profiling in a renal cell carcinoma cell line: Dissecting VHL and hypoxia-dependent pathways. Mol Cancer Res. 1:453–462. 2003.PubMed/NCBI | |
Li M, Tang Y, Zang W, Xuan X, Wang N, Ma Y, Wang Y, Dong Z and Zhao G: Analysis of HAX-1 gene expression in esophageal squamous cell carcinoma. Diagn Pathol. 8:472013.PubMed/NCBI | |
Sun SJ, Feng L, Zhao GQ and Dong ZM: HAX-1 promotes the chemoresistance, invasion, and tumorigenicity of esophageal squamous carcinoma cells. Dig Dis Sci. 57:1838–1846. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wei XJ, Li SY, Yu B, Chen G, Du JF and Cai HY: Expression of HAX-1 in human colorectal cancer and its clinical significance. Tumour Biol. 35:1411–1415. 2014. View Article : Google Scholar | |
Li WB, Feng J, Geng SM, Zhang PY, Yan XN, Hu G, Zhang CQ and Shi BJ: Induction of apoptosis by Hax-1 siRNA in melanoma cells. Cell Biol Int. 33:548–554. 2009. View Article : Google Scholar : PubMed/NCBI | |
Banerjee A, Saito K, Meyer K, Banerjee S, Ait-Goughoulte M, Ray RB and Ray R: Hepatitis C virus core protein and cellular protein HAX-1 promote 5-fluorouracil-mediated hepatocyte growth inhibition. J Virol. 83:9663–9671. 2009. View Article : Google Scholar : PubMed/NCBI | |
Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J and Ratajczak MZ: Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 113:752–760. 2005. View Article : Google Scholar | |
Soldevilla B, Rodríguez M, San Millán C, García V, Fernández-Periañez R, Gil-Calderón B, Martín P, García-Grande A, Silva J, Bonilla F, et al: Tumor-derived exosomes are enriched in ΔNp73, which promotes oncogenic potential in acceptor cells and correlates with patient survival. Hum Mol Genet. 23:467–478. 2014. View Article : Google Scholar | |
Yu X, Wei F, Yu J, Zhao H, Jia L, Ye Y, Du R, Ren X and Li H: Matrix metalloproteinase 13: A potential intermediate between low expression of microRNA-125b and increasing metastatic potential of non-small cell lung cancer. Cancer Genet. 208:76–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L and Winberg JO: Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 278:28–45. 2011. View Article : Google Scholar | |
Radisky ES and Radisky DC: Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 15:201–212. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hwang BM, Chae HS, Jeong YJ, Lee YR, Noh EM, Youn HZ, Jung SH, Yu HN, Chung EY and Kim JS: Protein tyrosine phosphatase controls breast cancer invasion through the expression of matrix metalloproteinase-9. BMB Rep. 46:533–538. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balbín M, Pendás AM, Uría JA, Jiménez MG, Freije JP and López-Otín C: Expression and regulation of collagenase-3 (MMP-13) in human malignant tumors. APMIS. 107:45–53. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sedighi M, Aledavood SA, Abbaszadegan M, Memar B, Montazer M, Rajabian M and Gholamin M: Matrix metalloproteinase-13: A potential biomarker for detection and prognostic assessment of patients with esophageal squamous Cell Carcinoma. Asian Pac J Cancer Prev. 17:2781–2785. 2016. | |
Vairaktaris E, Yapijakis C, Nkenke E, Serefoglou ZC, Chatzitheofylaktou A, Vassiliou S, Derka S, Vylliotis A, Perrea D, Neukam FW, et al: A metalloproteinase-13 polymorphism affecting its gene expression is associated with advanced stages of oral cancer. Anticancer Res. 27:4027–4030. 2007. | |
González-Arriaga P, López-Cima MF, Fernández-Somoano A, Pascual T, Marrón MG, Puente XS and Tardón A: Polymorphism +17 C/G in matrix metalloprotease MMP8 decreases lung cancer risk. BMC Cancer. 8:3782008. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jia JH, Kang S, Zhang XJ, Zhao J, Wang N, Zhou RM, Sun DL, Duan YN and Wang DJ: The functional polymorphisms on promoter region of matrix metalloproteinase-12, -13 genes may alter the risk of epithelial ovarian carcinoma in Chinese. Int J Gynecol Cancer. 19:129–133. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Gan Y, Shen Y, Cai X, Song Y, Zhao F, Yao M, Gu J and Tu H: Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget. 6:16120–16134. 2015. View Article : Google Scholar : PubMed/NCBI |