1
|
Kodera Y: The current state of stomach
cancer surgery in the world. Jpn J Clin Oncol. 46:1062–1071. 2016.
View Article : Google Scholar
|
2
|
Shitara K: Chemotherapy for advanced
gastric cancer: Future perspective in Japan. Gastric Cancer.
20(Suppl 1): 102–110. 2017. View Article : Google Scholar
|
3
|
Eke I, Makinde AY, Aryankalayil MJ, Ahmed
MM and Coleman CN: Comprehensive molecular tumor profiling in
radiation oncology: How it could be used for precision medicine.
Cancer Lett. 382:118–126. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pan L, Aguilar HA, Wang L, Iliuk A and Tao
WA: Three-dimensionally functionalized reverse phase glycoprotein
array for cancer biomarker discovery and validation. J Am Chem Soc.
138:15311–15314. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boussioutas A, Li H, Liu J, Waring P, Lade
S, Holloway AJ, Taupin D, Gorringe K, Haviv I, Desmond PV, et al:
Distinctive patterns of gene expression in premalignant gastric
mucosa and gastric cancer. Cancer Res. 63:2569–2577.
2003.PubMed/NCBI
|
6
|
Bass AJ, Thorsson V, Shmulevich I,
Reynolds SM, Miller M, Bernard B, Hinoue T, Laird PW, Curtis C,
Shen H, et al Cancer Genome Atlas Research Network: Comprehensive
molecular characterization of gastric adenocarcinoma. Nature.
513:202–209. 2014. View Article : Google Scholar :
|
7
|
Sousa JF, Ham AJ, Whitwell C, Nam KT, Lee
HJ, Yang HK, Kim WH, Zhang B, Li M, LaFleur B, et al: Proteomic
profiling of paraffin-embedded samples identifies
metaplasia-specific and early-stage gastric cancer biomarkers. Am J
Pathol. 181:1560–1572. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sunakawa Y and Lenz HJ: Molecular
classification of gastric adenocarcinoma: Translating new insights
from the cancer genome atlas research network. Curr Treat Options
Oncol. 16:172015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tan IB, Ivanova T, Lim KH, Ong CW, Deng N,
Lee J, Tan SH, Wu J, Lee MH, Ooi CH, et al: Intrinsic subtypes of
gastric cancer, based on gene expression pattern, predict survival
and respond differently to chemotherapy. Gastroenterology.
141:476–485. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Lauren P: The two histological main types
of gastric carcinoma: Diffuse and so-called intestinal-type
carcinoma. An attempt at a histo-clinical classification. Acta
Pathol Microbiol Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI
|
12
|
Blanpain C, Mohrin M, Sotiropoulou PA and
Passegué E: DNA-damage response in tissue-specific and cancer stem
cells. Cell Stem Cell. 8:16–29. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Marchesini M, Ogoti Y, Fiorini E, Aktas
Samur A, Nezi L, D'Anca M, Storti P, Samur MK, Ganan-Gomez I,
Fulciniti MT, et al: ILF2 is a regulator of RNA splicing and DNA
damage response in 1q21-amplified multiple myeloma. Cancer Cell.
32:88–100. e1062017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kai M: Roles of RNA-binding proteins in
DNA damage response. Int J Mol Sci. 17:3102016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yokozaki H: Molecular characteristics of
eight gastric cancer cell lines established in Japan. Pathol Int.
50:767–777. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang K, Kan J, Yuen ST, Shi ST, Chu KM,
Law S, Chan TL, Kan Z, Chan AS, Tsui WY, et al: Exome sequencing
identifies frequent mutation of ARID1A in molecular subtypes of
gastric cancer. Nat Genet. 43:1219–1223. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bartkova J, Horejsí Z, Koed K, Krämer A,
Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, et
al: DNA damage response as a candidate anti-cancer barrier in early
human tumorigenesis. Nature. 434:864–870. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Halazonetis TD, Gorgoulis VG and Bartek J:
An oncogene-induced DNA damage model for cancer development.
Science. 319:1352–1355. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Poehlmann A and Roessner A: Importance of
DNA damage checkpoints in the pathogenesis of human cancers. Pathol
Res Pract. 206:591–601. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shigeishi H, Yokozaki H, Oue N, Kuniyasu
H, Kondo T, Ishikawa T and Yasui W: Increased expression of CHK2 in
human gastric carcinomas harboring p53 mutations. Int J Cancer.
99:58–62. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee HE, Han N, Kim MA, Lee HS, Yang HK,
Lee BL and Kim WH: DNA damage response-related proteins in gastric
cancer: ATM, Chk2 and p53 expression and their prognostic value.
Pathobiology. 81:25–35. 2014. View Article : Google Scholar
|
22
|
Matsunobu T, Ishiwata T, Yoshino M,
Watanabe M, Kudo M, Matsumoto K, Tokunaga A, Tajiri T and Naito Z:
Expression of keratinocyte growth factor receptor correlates with
expansive growth and early stage of gastric cancer. Int J Oncol.
28:307–314. 2006.PubMed/NCBI
|
23
|
Xu W, Wang S, Chen Q, Zhang Y, Ni P, Wu X,
Zhang J, Qiang F, Li A, Røe OD, et al: TXNL1-XRCC1 pathway
regulates cisplatin-induced cell death and contributes to
resistance in human gastric cancer. Cell Death Dis. 5:e10552014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ronchetti L, Melucci E, De Nicola F,
Goeman F, Casini B, Sperati F, Pallocca M, Terrenato I, Pizzuti L,
Vici P, et al: DNA damage repair and survival outcomes in advanced
gastric cancer patients treated with first-line chemotherapy. Int J
Cancer. 140:2587–2595. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gutiérrez-González A, Belda-Iniesta C,
Bargiela-Iparraguirre J, Dominguez G, García Alfonso P, Perona R
and Sanchez-Perez I: Targeting Chk2 improves gastric cancer
chemotherapy by impairing DNA damage repair. Apoptosis. 18:347–360.
2013. View Article : Google Scholar
|