Inhibition of RPTOR overcomes resistance to EGFR inhibition in triple-negative breast cancer cells
- Authors:
- Kyu Sic You
- Yong Weon Yi
- Sahng-June Kwak
- Yeon-Sun Seong
-
Affiliations: Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea, ExoCoBio Inc, Seoul 08594, Republic of Korea, Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea - Published online on: January 15, 2018 https://doi.org/10.3892/ijo.2018.4244
- Pages: 828-840
This article is mentioned in:
Abstract
Mohamed A, Krajewski K, Cakar B and Ma CX: Targeted therapy for breast cancer. Am J Pathol. 183:1096–1112. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brenton JD, Carey LA, Ahmed AA and Caldas C: Molecular classification and molecular forecasting of breast cancer: Ready for clinical application? J Clin Oncol. 23:7350–7360. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, Schwartz GF, Park PK, Rosenberg AL, Brill K, et al: Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: A single-institution compilation compared with the National Cancer Institute's Surveillance, Epidemiology, and End Results database. Cancer. 110:876–884. 2007. View Article : Google Scholar : PubMed/NCBI | |
Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HW, Luts J, Monleon D, et al FEMME Consortium: Triple-negative breast cancer: Present challenges and new perspectives. Mol Oncol. 4:209–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 121:2750–2767. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD and Pietenpol JA: Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 232:142–150. 2014. View Article : Google Scholar : | |
Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, et al: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 26:1275–1281. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kassam F, Enright K, Dent R, Dranitsaris G, Myers J, Flynn C, Fralick M, Kumar R and Clemons M: Survival outcomes for patients with metastatic triple-negative breast cancer: Implications for clinical practice and trial design. Clin Breast Cancer. 9:29–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, Chae YK, Cristofanilli M, Gradishar WJ and Giles FJ: Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat Rev. 53:111–119. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA: Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eccles SA: The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol. 55:685–696. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wheeler DL, Dunn EF and Harari PM: Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 7:493–507. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yarden Y and Pines G: The ERBB network: At last, cancer therapy meets systems biology. Nat Rev Cancer. 12:553–563. 2012. View Article : Google Scholar : PubMed/NCBI | |
Reis-Filho JS and Tutt AN: Triple negative tumours: A critical review. Histopathology. 52:108–118. 2008. View Article : Google Scholar : PubMed/NCBI | |
Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT and Perou CM: Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 19:264–271. 2006. View Article : Google Scholar | |
Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, et al: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 10:5367–5374. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nakai K, Hung MC and Yamaguchi H: A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res. 6:1609–1623. 2016.PubMed/NCBI | |
Reis-Filho JS, Milanezi F, Carvalho S, Simpson PT, Steele D, Savage K, Lambros MB, Pereira EM, Nesland JM, Lakhani SR, et al: Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: Immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res. 7:R1028–R1035. 2005. View Article : Google Scholar : PubMed/NCBI | |
Reis-Filho JS, Pinheiro C, Lambros MB, Milanezi F, Carvalho S, Savage K, Simpson PT, Jones C, Swift S, Mackay A, et al: EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol. 209:445–453. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yarden Y and Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001. View Article : Google Scholar : PubMed/NCBI | |
Burness ML, Grushko TA and Olopade OI: Epidermal growth factor receptor in triple-negative and basal-like breast cancer: Promising clinical target or only a marker? Cancer J. 16:23–32. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alvarez RH, Valero V and Hortobagyi GN: Emerging targeted therapies for breast cancer. J Clin Oncol. 28:3366–3379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yi YW, Hong W, Kang HJ, Kim HJ, Zhao W, Wang A, Seong YS and Bae I: Inhibition of the PI3K/AKT pathway potentiates cytotoxicity of EGFR kinase inhibitors in triple-negative breast cancer cells. J Cell Mol Med. 17:648–656. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin Q and Esteva FJ: Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia. 13:485–498. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karamouzis MV, Konstantinopoulos PA and Papavassiliou AG: Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol. 10:709–717. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nahta R, Yu D, Hung MC, Hortobagyi GN and Esteva FJ: Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 3:269–280. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi H, Chang SS, Hsu JL and Hung MC: Signaling crosstalk in the resistance to HER family receptor targeted therapy. Oncogene. 33:1073–1081. 2014. View Article : Google Scholar | |
Baselga J: Targeting tyrosine kinases in cancer: The second wave. Science. 312:1175–1178. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yi YW, You K, Bae EJ, Kwak SJ, Seong YS and Bae I: Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int J Oncol. 47:122–132. 2015. View Article : Google Scholar : PubMed/NCBI | |
Massihnia D, Galvano A, Fanale D, Perez A, Castiglia M, Incorvaia L, Listì A, Rizzo S, Cicero G, Bazan V, et al: Triple negative breast cancer: Shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget. 7:60712–60722. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goldstein D, Bushmeyer SM, Witt PL, Jordan VC and Borden EC: Effects of type I and II interferons on cultured human breast cells: Interaction with estrogen receptors and with tamoxifen. Cancer Res. 49:2698–2702. 1989.PubMed/NCBI | |
Duong HQ, You KS, Oh S, Kwak SJ and Seong YS: Silencing of NRF2 reduces the expression of ALDH1A1 and ALDH3A1 and sensitizes to 5-FU in pancreatic cancer cells. Antioxidants. 6:62017. View Article : Google Scholar | |
Kim SI, Kim HJ, Lee HJ, Lee K, Hong D, Lim H, Cho K, Jung N and Yi YW: Application of a non-hazardous vital dye for cell counting with automated cell counters. Anal Biochem. 492:8–12. 2016. View Article : Google Scholar | |
Biscardi JS, Ishizawar RC, Silva CM and Parsons SJ: Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2:203–210. 2000. View Article : Google Scholar | |
Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N and Slamon DJ: Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/'triple-negative' breast cancer cell lines growing in vitro. Breast Cancer Res Treat. 105:319–326. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feder D and Bishop JM: Purification and enzymatic characterization of pp60c-src from human platelets. J Biol Chem. 265:8205–8211. 1990.PubMed/NCBI | |
Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504–3513. 2000. | |
Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ and Roth RA: Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem. 278:10189–10194. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R and Sonenberg N: Regulation of 4E-BP1 phosphorylation: A novel two-step mechanism. Genes Dev. 13:1422–1437. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wullschleger S, Loewith R and Hall MN: TOR signaling in growth and metabolism. Cell. 124:471–484. 2006. View Article : Google Scholar : PubMed/NCBI | |
Laplante M and Sabatini DM: mTOR signaling at a glance. J Cell Sci. 122:3589–3594. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sabatini DM: mTOR and cancer: Insights into a complex relationship. Nat Rev Cancer. 6:729–734. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ueng SH, Chen SC, Chang YS, Hsueh S, Lin YC, Chien HP, Lo YF, Shen SC and Hsueh C: Phosphorylated mTOR expression correlates with poor outcome in early-stage triple negative breast carcinomas. Int J Clin Exp Pathol. 5:806–813. 2012.PubMed/NCBI | |
Walsh S, Flanagan L, Quinn C, Evoy D, McDermott EW, Pierce A and Duffy MJ: mTOR in breast cancer: Differential expression in triple-negative and non-triple-negative tumors. Breast. 21:178–182. 2012. View Article : Google Scholar | |
Montero JC, Esparís-Ogando A, Re-Louhau MF, Seoane S, Abad M, Calero R, Ocaña A and Pandiella A: Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene. 33:148–156. 2014. View Article : Google Scholar | |
Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, Pritchard K, Eisen A, Vandenberg T, Taylor M, et al: Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol. 27:4536–4541. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jovanović B, Mayer IA, Mayer EL, Abramson VG, Bardia A, Sanders ME, Kuba MG, Estrada MV, Beeler JS, Shaver TM, et al: A Randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): Responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67. Clin Cancer Res. 23:4035–4045. 2017. View Article : Google Scholar | |
Gonzalez-Angulo AM, Akcakanat A, Liu S, Green MC, Murray JL, Chen H, Palla SL, Koenig KB, Brewster AM, Valero V, et al: Open-label randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC versus the combination of paclitaxel and everolimus followed by FEC in women with triple receptor-negative breast cancer. Ann Oncol. 25:1122–1127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oualla K, El-Zawahry HM, Arun B, Reuben JM, Woodward WA, Gamal El-Din H, Lim B, Mellas N, Ueno NT and Fouad TM: Novel therapeutic strategies in the treatment of triple-negative breast cancer. Ther Adv Med Oncol. 9:493–511. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Yacoub R, Taliaferro-Smith LD, Sun SY, Graham TR, Dolan R, Lobo C, Tighiouart M, Yang L, Adams A, et al: Combinatorial effects of lapatinib and rapamycin in triple-negative breast cancer cells. Mol Cancer Ther. 10:1460–1469. 2011. View Article : Google Scholar : PubMed/NCBI | |
Madden JM, Mueller KL, Bollig-Fischer A, Stemmer P, Mattingly RR and Boerner JL: Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer. Breast Cancer Res Treat. 147:283–293. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 110:163–175. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Tan Z, Gao J, Wu W, Liu L, Jin W, Cao Y, Zhao S, Zhang W, Qiu Z, et al: Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer. J Exp Clin Cancer Res. 34:1262015. View Article : Google Scholar : PubMed/NCBI | |
Iwenofu OH, Lackman RD, Staddon AP, Goodwin DG, Haupt HM and Brooks JS: Phospho-S6 ribosomal protein: A potential new predictive sarcoma marker for targeted mTOR therapy. Mod Pathol. 21:231–237. 2008. View Article : Google Scholar | |
Komori Y, Yada K, Ohta M, Uchida H, Iwashita Y, Fukuzawa K, Kashima K, Yokoyama S, Inomata M and Kitano S: Mammalian target of rapamycin signaling activation patterns in pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci. 21:288–295. 2014. View Article : Google Scholar | |
Masuda M, Chen WY, Miyanaga A, Nakamura Y, Kawasaki K, Sakuma T, Ono M, Chen CL, Honda K and Yamada T: Alternative mammalian target of rapamycin (mTOR) signal activation in sorafenib-resistant hepatocellular carcinoma cells revealed by array-based pathway profiling. Mol Cell Proteomics. 13:1429–1438. 2014. View Article : Google Scholar : PubMed/NCBI | |
Knoll M, Macher-Goeppinger S, Kopitz J, Duensing S, Pahernik S, Hohenfellner M, Schirmacher P and Roth W: The ribosomal protein S6 in renal cell carcinoma: Functional relevance and potential as biomarker. Oncotarget. 7:418–432. 2016. View Article : Google Scholar : | |
Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, Logie A, Hargreaves J, Hickinson DM, Wilkinson RW, et al: Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol. 3:248–261. 2009. View Article : Google Scholar : PubMed/NCBI | |
Maira SM, Stauffer F, Brueggen J, Furet P, Schnell CC, Brachmann S, Chène P, De Pover A, Schoemaker K, et al: Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 7:1851–1863. 2008. View Article : Google Scholar : PubMed/NCBI | |
Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, Oyarzabal J, Pastor J, Bischoff JR and Fernandez-Capetillo O: A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol. 18:721–727. 2011. View Article : Google Scholar : PubMed/NCBI | |
O'Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MW, et al: In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 65:4500–4505. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shah NP, Lee FY, Luo R, Jiang Y, Donker M and Akin C: Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood. 108:286–291. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rivera VM, Squillace RM, Miller D, Berk L, Wardwell SD, Ning Y, Pollock R, Narasimhan NI, Iuliucci JD, Wang F, et al: Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol Cancer Ther. 10:1059–1071. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chun KH, Kosmeder JW II, Sun S, Pezzuto JM, Lotan R, Hong WK and Lee HY: Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst. 95:291–302. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schuler W, Sedrani R, Cottens S, Häberlin B, Schulz M, Schuurman HJ, Zenke G, Zerwes HG and Schreier MH: SDZ RAD, a new rapamycin derivative: Pharmacological properties in vitro and in vivo. Transplantation. 64:36–42. 1997. View Article : Google Scholar : PubMed/NCBI | |
Flanagan WM, Corthésy B, Bram RJ and Crabtree GR: Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 352:803–807. 1991. View Article : Google Scholar : PubMed/NCBI | |
Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, et al: The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem. 51:5522–5532. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carnero A: Novel inhibitors of the PI3K family. Expert Opin Investig Drugs. 18:1265–1277. 2009. View Article : Google Scholar : PubMed/NCBI | |
Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, et al: A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 125:733–747. 2006. View Article : Google Scholar : PubMed/NCBI | |
García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM and Alessi DR: Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 421:29–42. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vlahos CJ, Matter WF, Hui KY and Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem. 269:5241–5248. 1994.PubMed/NCBI | |
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, et al: MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gills JJ and Dennis PA: Perifosine: Update on a novel Akt inhibitor. Curr Oncol Rep. 11:102–110. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nghiem P, Pearson G and Langley RG: Tacrolimus and pimecrolimus: From clever prokaryotes to inhibiting calcineurin and treating atopic dermatitis. J Am Acad Dermatol. 46:228–241. 2002. View Article : Google Scholar : PubMed/NCBI | |
Edwards SR and Wandless TJ: The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J Biol Chem. 282:13395–13401. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shor B, Zhang WG, Toral-Barza L, Lucas J, Abraham RT, Gibbons JJ and Yu K: A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res. 68:2934–2943. 2008. View Article : Google Scholar : PubMed/NCBI | |
Marone R, Cmiljanovic V, Giese B and Wymann MP: Targeting phosphoinositide 3-kinase: Moving towards therapy. Biochim Biophys Acta. 1784:159–185. 2008. View Article : Google Scholar | |
Somwar R, Niu W, Kim DY, Sweeney G, Randhawa VK, Huang C, Ramlal T and Klip A: Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J Biol Chem. 276:46079–46087. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K and Yamori T: Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst. 98:545–556. 2006. View Article : Google Scholar : PubMed/NCBI |