1
|
Mulhern RK, Merchant TE, Gajjar A, Reddick
WE and Kun LE: Late neurocognitive sequelae in survivors of brain
tumours in childhood. Lancet Oncol. 5:399–408. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rood BR, Macdonald TJ and Packer RJ:
Current treatment of medulloblastoma: Recent advances and future
challenges. Semin Oncol. 31:666–675. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
American Society of Clinical Oncology
(ASCO): Medulloblastoma - Childhood: Statistics. https://www.cancer.net/cancer-types/medulloblastoma-childhood/statistics.
Accessed Aug, 2016.
|
4
|
Oeffinger KC and Hudson MM: Long-term
complications following childhood and adolescent cancer:
Foundations for providing risk-based health care for survivors. CA
Cancer J Clin. 54:208–236. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Bont JM, Packer RJ, Michiels EM, den
Boer ML and Pieters R: Biological background of pediatric
medulloblastoma and ependymoma: A review from a translational
research perspective. Neuro-oncol. 10:1040–1060. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thompson MC, Fuller C, Hogg TL, Dalton J,
Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM,
Kellie SJ, et al: Genomics identifies medulloblastoma subgroups
that are enriched for specific genetic alterations. J Clin Oncol.
24:1924–1931. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hartmann W, Koch A, Brune H, Waha A,
Schüller U, Dani I, Denkhaus D, Langmann W, Bode U, Wiestler OD, et
al: Insulin-like growth factor II is involved in the proliferation
control of medulloblastoma and its cerebellar precursor cells. Am J
Pathol. 166:1153–1162. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Remke M, Hielscher T, Korshunov A,
Northcott PA, Bender S, Kool M, Westermann F, Benner A, Cin H,
Ryzhova M, et al: FSTL5 is a marker of poor prognosis in
non-WNT/non-SHH medulloblastoma. J Clin Oncol. 29:3852–3861. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kawauchi D, Robinson G, Uziel T, Gibson P,
Rehg J, Gao C, Finkelstein D, Qu C, Pounds S, Ellison DW, et al: A
mouse model of the most aggressive subgroup of human
medulloblastoma. Cancer Cell. 21:168–180. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Northcott PA, Lee C, Zichner T, Stütz AM,
Erkek S, Kawauchi D, Shih DJ, Hovestadt V, Zapatka M, Sturm D, et
al: Enhancer hijacking activates GFI1 family oncogenes in
medulloblastoma. Nature. 511:428–434. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Robinson G, Parker M, Kranenburg TA, Lu C,
Chen X, Ding L, Phoenix TN, Hedlund E, Wei L, Zhu X, et al: Novel
mutations target distinct subgroups of medulloblastoma. Nature.
488:43–48. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hovestadt V, Jones DT, Picelli S, Wang W,
Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz
HJ, et al: Decoding the regulatory landscape of medulloblastoma
using DNA methylation sequencing. Nature. 510:537–541. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin CY, Erkek S, Tong Y, Yin L, Federation
AJ, Zapatka M, Haldipur P, Kawauchi D, Risch T, Warnatz HJ, et al:
Active medulloblastoma enhancers reveal subgroup-specific cellular
origins. Nature. 530:57–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Watanabe Y and Maekawa M: Methylation of
DNA in cancer. Adv Clin Chem. 52:145–167. 2010. View Article : Google Scholar
|
15
|
Feinberg AP, Koldobskiy MA and Göndör A:
Epigenetic modulators, modifiers and mediators in cancer aetiology
and progression. Nat Rev Genet. 17:284–299. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lister R, Pelizzola M, Dowen RH, Hawkins
RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, et al:
Human DNA methylomes at base resolution show widespread epigenomic
differences. Nature. 462:315–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ziller MJ, Gu H, Müller F, Donaghey J,
Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein
BE, et al: Charting a dynamic DNA methylation landscape of the
human genome. Nature. 500:477–481. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rondelet G and Wouters J: Human DNA
(cytosine-5)-methyltransferases: A functional and structural
perspective for epigenetic cancer therapy. Biochimie. 139:137–147.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Baryawno N, Rahbar A, Wolmer-Solberg N,
Taher C, Odeberg J, Darabi A, Khan Z, Sveinbjörnsson B, FuskevÅg
OM, Segerström L, et al: Detection of human cytomegalovirus in
medulloblastomas reveals a potential therapeutic target. J Clin
Invest. 121:4043–4055. 2011. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Rahbar A, Orrego A, Peredo I, Dzabic M,
Wolmer-Solberg N, Strååt K, Stragliotto G and Söderberg-Nauclér C:
Human cytomegalovirus infection levels in glioblastoma multiforme
are of prognostic value for survival. J Clin Virol. 57:36–42. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wolmer-Solberg N, Baryawno N, Rahbar A,
Fuchs D, Odeberg J, Taher C, Wilhelmi V, Milosevic J, Mohammad AA,
Martinsson T, et al: Frequent detection of human cytomegalovirus in
neuro-blastoma: A novel therapeutic target? Int J Cancer.
133:2351–2361. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bartek J Jr, Fornara O, Merchut-Maya JM,
Maya-Mendoza A, Rahbar A, Stragliotto G, Broholm H, Svensson M,
Sehested A, Söderberg Naucler C, et al: Replication stress, DNA
damage signalling, and cytomegalovirus infection in human
medulloblastomas. Mol Oncol. 11:945–964. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Taylor-Wiedeman J, Sissons JG, Borysiewicz
LK and Sinclair JH: Monocytes are a major site of persistence of
human cytomegalovirus in peripheral blood mononuclear cells. J Gen
Virol. 72:2059–2064. 1991. View Article : Google Scholar : PubMed/NCBI
|
24
|
Emery VC: Investigation of CMV disease in
immunocompromised patients. J Clin Pathol. 54:84–88. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Gaytant MA, Steegers EA, Semmekrot BA,
Merkus HM and Galama JM: Congenital cytomegalovirus infection:
Review of the epidemiology and outcome. Obstet Gynecol Surv.
57:245–256. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu XF, Wang X, Yan S, Zhang Z, Abecassis
M and Hummel M: Epigenetic control of cytomegalovirus latency and
reactivation. Viruses. 5:1325–1345. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Esteki-Zadeh A, Karimi M, Strååt K,
Ammerpohl O, Zeitelhofer M, Jagodic M, Mehrab-Mohseni M, Sjöholm L,
Rahbar A, Söderberg-Nauclér C, et al: Human cytomegalovirus
infection is sensitive to the host cell DNA methylation state and
alters global DNA methylation capacity. Epigenetics. 7:585–593.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Estécio MR and Issa JP: Dissecting DNA
hypermethylation in cancer. FEBS Lett. 585:2078–2086. 2011.
View Article : Google Scholar
|
29
|
Kanherkar RR, Bhatia-Dey N and Csoka AB:
Epigenetics across the human lifespan. Front Cell Dev Biol.
2:492014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lindsey JC, Lusher ME, Anderton JA, Bailey
S, Gilbertson RJ, Pearson AD, Ellison DW and Clifford SC:
Identification of tumour-specific epigenetic events in
medulloblastoma development by hypermethylation profiling.
Carcinogenesis. 25:661–668. 2004. View Article : Google Scholar
|
31
|
Bayarsaihan D: Epigenetic mechanisms in
inflammation. J Dent Res. 90:9–17. 2011. View Article : Google Scholar :
|
32
|
Gómez-Díaz E, Jordà M, Peinado MA and
Rivero A: Epigenetics of host-pathogen interactions: The road ahead
and the road behind. PLoS Pathog. 8:e10030072012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cinatl J Jr, Vogel JU, Kotchetkov R and
Wilhelm Doerr H: Oncomodulatory signals by regulatory proteins
encoded by human cytomegalovirus: A novel role for viral infection
in tumor progression. FEMS Microbiol Rev. 28:59–77. 2004.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Fortunato EA, Dell'Aquila ML and Spector
DH: Specific chromosome 1 breaks induced by human cytomegalovirus.
Proc Natl Acad Sci USA. 97:853–858. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Prichard MN, Sztul E, Daily SL, Perry AL,
Frederick SL, Gill RB, Hartline CB, Streblow DN, Varnum SM, Smith
RD, et al: Human cytomegalovirus UL97 kinase activity is required
for the hyperphosphorylation of retinoblastoma protein and inhibits
the formation of nuclear aggresomes. J Virol. 82:5054–5067. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Herbein G and Kumar A: The oncogenic
potential of human cytomegalovirus and breast cancer. Front Oncol.
4:2302014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Baryawno N, Sveinbjörnsson B, Eksborg S,
Orrego A, Segerström L, Oqvist CO, Holm S, Gustavsson B, Kågedal B,
Kogner P and Johnsen JI: Tumor-growth-promoting cyclooxygenase-2
prostaglandin E2 pathway provides medulloblastoma therapeutic
targets. Neuro Oncol. 10:661–674. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhu H, Cong JP, Yu D, Bresnahan WA and
Shenk TE: Inhibition of cyclooxygenase 2 blocks human
cytomegalovirus replication. Proc Natl Acad Sci USA. 99:3932–3937.
2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
MacDonald TJ, Aguilera D and Castellino
RC: The rationale for targeted therapies in medulloblastoma.
Neuro-oncol. 16:9–20. 2014. View Article : Google Scholar
|