1
|
McGlynn KA, Tarone RE and El-Serag HB: A
comparison of trends in the incidence of hepatocellular carcinoma
and intrahepatic cholangiocarcinoma in the United States. Cancer
Epidemiol Biomarkers Prev. 15:1198–1203. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Patel T: Increasing incidence and
mortality of primary intra-hepatic cholangiocarcinoma in the United
States. Hepatology. 33:1353–1357. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Patel T: Worldwide trends in mortality
from biliary tract malignancies. BMC Cancer. 2:102002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sia D, Tovar V, Moeini A and Llovet JM:
Intrahepatic cholangiocarcinoma: Pathogenesis and rationale for
molecular therapies. Oncogene. 32:4861–4870. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
West MH and Bonner WM: Histone 2A, a
heteromorphous family of eight protein species. Biochemistry.
19:3238–3245. 1980. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rangasamy D, Greaves I and Tremethick DJ:
RNA interference demonstrates a novel role for H2A.Z in chromosome
segregation. Nat Struct Mol Biol. 11:650–655. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dhillon N, Oki M, Szyjka SJ, Aparicio OM
and Kamakaka RT: H2A.Z functions to regulate progression through
the cell cycle. Mol Cell Biol. 26:489–501. 2006. View Article : Google Scholar :
|
8
|
Meneghini MD, Wu M and Madhani HD:
Conserved histone variant H2A.Z protects euchromatin from the
ectopic spread of silent heterochromatin. Cell. 112:725–736. 2003.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kafer GR, Lehnert SA, Pantaleon M, Kaye PL
and Moser RJ: Expression of genes coding for histone variants and
histone-associated proteins in pluripotent stem cells and mouse
preimplantation embryos. Gene Expr Patterns. 10:299–305. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Huh YH, Noh M, Burden FR, Chen JC, Winkler
DA and Sherley JL: Sparse feature selection identifies H2A.Z as a
novel, pattern-specific biomarker for asymmetrically self-renewing
distributed stem cells. Stem Cell Res (Amst). 14:144–154. 2015.
View Article : Google Scholar
|
11
|
Noh M, Smith JL and Huh YH: A resource for
discovering specific and universal biomarkers for distributed stem
cells. PLoS One. 6:e220772011.PubMed/NCBI
|
12
|
Faast R, Thonglairoam V, Schulz TC, Beall
J, Wells JR, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ and
Lyons I: Histone variant H2A.Z is required for early mammalian
development. Curr Biol. 11:1183–1187. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hua S, Kallen CB, Dhar R, Baquero MT,
Mason CE, Russell BA, Shah PK, Liu J, Khramtsov A, Tretiakova MS,
et al: Genomic analysis of estrogen cascade reveals histone variant
H2A.Z associated with breast cancer progression. Mol Syst Biol.
4:1882008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Slupianek A, Yerrum S, Safadi FF and
Monroy MA: The chromatin remodeling factor SRCAP modulates
expression of prostate specific antigen and cellular proliferation
in prostate cancer cells. J Cell Physiol. 224:369–375. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim K, Punj V, Choi J, Heo K, Kim JM,
Laird PW and An W: Gene dysregulation by histone variant H2A.Z in
bladder cancer. Epigenetics Chromatin. 6:342013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vardabasso C, Gaspar-Maia A, Hasson D,
Pünzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong
J, Panda T, et al: Histone variant H2A.Z.2 mediates proliferation
and drug sensitivity of malignant melanoma. Mol Cell. 59:75–88.
2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang HD, Kim PJ, Eun JW, Shen Q, Kim HS,
Shin WC, Ahn YM, Park WS, Lee JY and Nam SW: Oncogenic potential of
histone-variant H2A.Z.1 and its regulatory role in cell cycle and
epithelial-mesenchymal transition in liver cancer. Oncotarget.
7:11412–11423. 2016.PubMed/NCBI
|
18
|
Oh M, Lee JH, Moon H, Hyun YJ and Lim HS:
A chemical inhibitor of the Skp2/p300 interaction that promotes
p53-mediated apoptosis. Angew Chem Int Ed Engl. 55:602–606. 2016.
View Article : Google Scholar
|
19
|
Skaar JR, Pagan JK and Pagano M: SCF
ubiquitin ligase-targeted therapies. Nat Rev Drug Discov.
13:889–903. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Z, Liu P, Inuzuka H and Wei W: Roles
of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Xiao H, Tong R, Cheng S, Lv Z, Ding C, Du
C, Xie H, Zhou L, Wu J and Zheng S: BAG3 and HIF-1 α coexpression
detected by immunohistochemistry correlated with prognosis in
hepatocellular carcinoma after liver transplantation. BioMed Res
Int. 2014:5165182014. View Article : Google Scholar
|
22
|
Xiao H, Tong R, Yang B, Lv Z, Du C, Peng
C, Ding C, Cheng S, Zhou L, Xie H, et al: TAZ regulates cell
proliferation and sensitivity to vitamin D3 in intrahepatic
cholangiocarcinoma. Cancer Lett. 381:370–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Farley DR, Weaver AL and Nagorney DM:
'Natural history' of unresected cholangiocarcinoma: Patient outcome
after noncurative intervention. Mayo Clin Proc. 70:425–429. 1995.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pabla N and Dong Z: Cisplatin
nephrotoxicity: Mechanisms and renoprotective strategies. Kidney
Int. 73:994–1007. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang D and Lippard SJ: Cellular processing
of platinum anticancer drugs. Nat Rev Drug Discov. 4:307–320. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Valle J, Wasan H, Palmer DH, Cunningham D,
Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira
SP, et al: ABC-02 Trial Investigators: Cisplatin plus gemcitabine
versus gemcitabine for biliary tract cancer. N Engl J Med.
362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ausió J: Histone variants - the structure
behind the function. Brief Funct Genomics Proteomics. 5:228–243.
2006. View Article : Google Scholar
|
28
|
Jin C and Felsenfeld G: Nucleosome
stability mediated by histone variants H3.3 and H2A.Z. Genes Dev.
21:1519–1529. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu
O, Hu Y and Price BD: Histone H2A.Z controls a critical chromatin
remodeling step required for DNA double-strand break repair. Mol
Cell. 48:723–733. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gévry N, Chan HM, Laflamme L, Livingston
DM and Gaudreau L: p21 transcription is regulated by differential
localization of histone H2A.Z. Genes Dev. 21:1869–1881. 2007.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Taty-Taty GC, Courilleau C, Quaranta M,
Carayon A, Chailleux C, Aymard F, Trouche D and Canitrot Y: H2A.Z
depletion impairs proliferation and viability but not DNA
double-strand breaks repair in human immortalized and tumoral cell
lines. Cell Cycle. 13:399–407. 2014. View Article : Google Scholar :
|
32
|
Latres E, Chiarle R, Schulman BA,
Pavletich NP, Pellicer A, Inghirami G and Pagano M: Role of the
F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA.
98:2515–2520. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ang XL and Wade Harper J: SCF-mediated
protein degradation and cell cycle control. Oncogene. 24:2860–2870.
2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Barr AR, Cooper S, Heldt FS, Butera F,
Stoy H, Mansfeld J, Novák B and Bakal C: DNA damage during S-phase
mediates the proliferation-quiescence decision in the subsequent G1
via p21 expression. Nat Commun. 8:147282017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Barr AR, Heldt FS, Zhang T, Bakal C and
Novák B: A dynamical framework for the all-or-none G1/S transition.
Cell Syst. 2:27–37. 2016. View Article : Google Scholar : PubMed/NCBI
|