1
|
Sehn LH and Gascoyne RD: Diffuse large
B-cell lymphoma: Optimizing outcome in the context of clinical and
biologic heterogeneity. Blood. 125:22–32. 2015. View Article : Google Scholar
|
2
|
Lenz G, Wright G, Dave SS, Xiao W, Powell
J, Zhao H, Xu W, Tan B, Goldschmidt N, Iqbal J, et al
Lymphoma/Leukemia Molecular Profiling Project: Stromal gene
signatures in large-B-cell lymphomas. N Engl J Med. 359:2313–2323.
2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nakajima Y, Tomita N, Itabashi M,
Miyashita K, Watanabe R, Miyazaki T, Tachibana T, Takasaki H,
Kawasaki R, Tanaka M, et al: Analysis of outcomes in patients with
supra-diaphragmatic vs infra-diaphragmatic diffuse large B cell
lymphoma treated with R-CHOP therapy. Leuk Res. 39:198–203. 2015.
View Article : Google Scholar
|
4
|
Fowler NH: R2-CHOP vs R-CHOP for diffuse
large B-cell lymphoma. Clin Adv Hematol Oncol. 12:608–610.
2014.
|
5
|
Rezvani AR and Maloney DG: Rituximab
resistance. Best Pract Res Clin Haematol. 24:203–216. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Stolz C and Schuler M: Molecular
mechanisms of resistance to Rituximab and pharmacologic strategies
for its circumvention. Leuk Lymphoma. 50:873–885. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bello C and Sotomayor EM: Monoclonal
antibodies for B-cell lymphomas: Rituximab and beyond. Hematology
(Am Soc Hematol Educ Program). 2007.233–242. 2007.
|
8
|
Seyfizadeh N, Seyfizadeh N, Hasenkamp J
and Huerta-Yepez S: A molecular perspective on rituximab: A
monoclonal antibody for B cell non Hodgkin lymphoma and other
affections. Crit Rev Oncol Hematol. 97:275–290. 2016. View Article : Google Scholar
|
9
|
Pavanello F, Zucca E and Ghielmini M:
Rituximab: 13 open questions after 20 years of clinical use. Cancer
Treat Rev. 53:38–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Iwakura Y, Ishigame H, Saijo S and Nakae
S: Functional specialization of interleukin-17 family members.
Immunity. 34:149–162. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gaffen SL: Structure and signalling in the
IL-17 receptor family. Nat Rev Immunol. 9:556–567. 2009. View Article : Google Scholar
|
12
|
Bettelli E, Carrier Y, Gao W, Korn T,
Strom TB, Oukka M, Weiner HL and Kuchroo VK: Reciprocal
developmental pathways for the generation of pathogenic effector
TH17 and regulatory T cells. Nature. 441:235–238. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hemdan NY: Anti-cancer versus
cancer-promoting effects of the interleukin-17-producing T helper
cells. Immunol Lett. 149:123–133. 2013. View Article : Google Scholar
|
14
|
Du R, Zhao H, Yan F and Li H:
IL-17+ Foxp3+ T cells: An intermediate
differentiation stage between Th17 cells and regulatory T cells. J
Leukoc Biol. 96:39–48. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang C and Fu ZX: Localization of
IL-17+Foxp3+ T cells in esophageal cancer.
Immunol Invest. 40:400–412. 2011. View Article : Google Scholar
|
16
|
Li L and Boussiotis VA: The role of
IL-17-producing Foxp3+ CD4+ T cells in
inflammatory bowel disease and colon cancer. Clin Immunol.
148:246–253. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gomez-Gelvez JC, Salama ME, Perkins SL,
Leavitt M and Inamdar KV: Prognostic impact of tumor
microenvironment in diffuse large B-cell lymphoma uniformly treated
with R-CHOP chemotherapy. Am J Clin Pathol. 145:514–523. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE
and Ansell SM: Malignant B cells skew the balance of regulatory T
cells and TH17 cells in B-cell non-Hodgkin's lymphoma. Cancer Res.
69:5522–5530. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lu T, Yu S, Liu Y, Yin C, Ye J, Liu Z, Ma
D and Ji C: Aberrant circulating Th17 cells in patients with B-cell
non-Hodgkin's lymphoma. PLoS One. 11:e01480442016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ferretti E, Di Carlo E, Ognio E, Guarnotta
C, Bertoni F, Corcione A, Prigione I, Fraternali-Orcioni G, Ribatti
D, Ravetti JL, et al: Interleukin-17A promotes the growth of human
germinal center derived non-Hodgkin B cell lymphoma.
OncoImmunology. 4:e10305602015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li Q, Xu X, Zhong W, Du Q, Yu B and Xiong
H: IL-17 induces radiation resistance of B lymphoma cells by
suppressing p53 expression and thereby inhibiting
irradiation-triggered apoptosis. Cell Mol Immunol. 12:366–372.
2015. View Article : Google Scholar :
|
22
|
Obenauf AC, Zou Y, Ji AL, Vanharanta S,
Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, et al:
Therapy-induced tumour secretomes promote resistance and tumour
progression. Nature. 520:368–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Khan MA, Garg K, Bhurani D and Agarwal NB:
Early manifestation of mild cognitive impairment in B-cell
non-Hodgkin's lymphoma patients receiving CHOP and rituximab-CHOP
chemotherapy. Naunyn Schmiedebergs Arch Pharmacol. 389:1253–1265.
2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zimmer P, Mierau A, Bloch W, Strüder HK,
Hülsdünker T, Schenk A, Fiebig L, Baumann FT, Hahn M, Reinart N, et
al: Post-chemotherapy cognitive impairment in patients with B-cell
non-Hodgkin lymphoma: A first comprehensive approach to determine
cognitive impairments after treatment with rituximab,
cyclophosphamide, doxorubicin, vincristine and prednisone or
rituximab and bendamustine. Leuk Lymphoma. 56:347–352. 2015.
View Article : Google Scholar
|
25
|
Zhong W, Xu X, Zhu Z, Du Q, Du H, Yang L,
Ling Y, Xiong H and Li Q: Increased expression of IRF8 in tumor
cells inhibits the generation of Th17 cells and predicts
unfavorable survival of diffuse large B cell lymphoma patients.
Oncotarget. 8:49757–49772. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jones JD, Hamilton BJ, Skopelja S and
Rigby WF: Induction of interleukin-6 production by rituximab in
human B cells. Arthritis Rheumatol. 66:2938–2946. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Giachelia M, Voso MT, Tisi MC, Martini M,
Bozzoli V, Massini G, D'Aló F, Larocca LM, Leone G and Hohaus S:
Interleukin-6 plasma levels are modulated by a polymorphism in the
NF-κB1 gene and are associated with outcome following
rituximab-combined chemotherapy in diffuse large B-cell non-Hodgkin
lymphoma. Leuk Lymphoma. 53:411–416. 2012. View Article : Google Scholar
|
28
|
Gougelet A, Mansuy A, Blay JY, Alberti L
and Vermot-Desroches C: Lymphoma and myeloma cell resistance to
cytotoxic agents and ionizing radiations is not affected by
exposure to anti-IL-6 antibody. PLoS One. 4:e80262009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yin Q, Chen L, Li Q, Mi R, Li Y, Wei X and
Song Y: Changes of T-lymphocyte subpopulation and differential
expression pattern of the T-bet and GATA-3 genes in diffuse large
B-cell lymphoma patients after chemotherapy. Cancer Cell Int.
14:852014. View Article : Google Scholar
|
30
|
Rusak M, Bołkun Ł, Chociej-Stypułkowska J,
Pawlus J, Kłoczko J and Dąbrowska M: Flow-cytometry-based
evaluation of peripheral blood lymphocytes in prognostication of
newly diagnosed DLBCL patients. Blood Cells Mol Dis. 59:92–96.
2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
G łowala-Kosińska M, Chwieduk A, Nieckula
J, Saduś-Wojciechowska M, Grosicki S, Rusin A, Nowara E and Giebel
S: Association of circulating regulatory T cell number with the
incidence and prognosis of diffuse large B-cell lymphoma. Eur J
Haematol. 91:122–128. 2013. View Article : Google Scholar
|
32
|
Pullerits R, Ljevak M, Vikgren J and
Bokarewa M: Off-trial evaluation of the B cell-targeting treatment
in the refractory cases of antineutrophil cytoplasmic antibodies
(ANCA)-associated vasculitis: Long-term follow-up from a single
centre. Scand J Immunol. 76:411–420. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ciccia F, Guggino G, Rizzo A, Alessandro
R, Carubbi F, Giardina A, Cipriani P, Ferrante A, Cannizzaro A,
Giacomelli R, et al: Rituximab modulates IL-17 expression in the
salivary glands of patients with primary Sjögren's syndrome.
Rheumatology (Oxford). 53:1313–1320. 2014. View Article : Google Scholar
|
34
|
Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE
and Ansell SM: CD70+ non-Hodgkin lymphoma B cells induce
Foxp3 expression and regulatory function in intratumoral
CD4+CD25 T cells. Blood. 110:2537–2544. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xu B, Guenther JF, Pociask DA, Wang Y,
Kolls JK, You Z, Chandrasekar B, Shan B, Sullivan DE and Morris GF:
Promotion of lung tumor growth by interleukin-17. Am J Physiol Lung
Cell Mol Physiol. 307:L497–L508. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang Q, Liu S, Zhang Q, Xiong Z, Wang AR,
Myers L, Melamed J, Tang WW and You Z: Interleukin-17 promotes
development of castration-resistant prostate cancer potentially
through creating an immunotolerant and pro-angiogenic tumor
microenvironment. Prostate. 74:869–879. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu X, Zeng Z, Xu L, Yu J, Cao Q, Chen M,
Sung JJ and Hu P: Increased expression of IL17A in human gastric
cancer and its potential roles in gastric carcinogenesis. Tumour
Biol. 35:5347–5356. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tessoulin B, Eveillard M, Lok A, Chiron D,
Moreau P, Amiot M, Moreau-Aubry A, Le Gouill S and
Pellat-Deceunynck C: p53 dysregulation in B-cell malignancies: More
than a single gene in the pathway to hell. Blood Rev. 31:251–259.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lu TX, Young KH, Xu W and Li JY: TP53
dysfunction in diffuse large B-cell lymphoma. Crit Rev Oncol
Hematol. 97:47–55. 2016. View Article : Google Scholar
|
40
|
Radosavljevic G, Ljujic B, Jovanovic I,
Srzentic Z, Pavlovic S, Zdravkovic N, Milovanovic M, Bankovic D,
Knezevic M, Acimovic LJ, et al: Interleukin-17 may be a valuable
serum tumor marker in patients with colorectal carcinoma.
Neoplasma. 57:135–144. 2010. View Article : Google Scholar : PubMed/NCBI
|