1
|
Wang J and Maldonado MA: The
ubiquitin-proteasome system and its role in inflammatory and
autoimmune diseases. Cell Mol Immunol. 3:255–261. 2006.PubMed/NCBI
|
2
|
Zhang X, Berger FG, Yang J and Lu X: USP4
inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO
J. 30:2177–2189. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Callis J: The ubiquitination machinery of
the ubiquitin system. Arabidopsis Book. 12:e01742014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kulathu Y and Komander D: Atypical
ubiquitylation - the unexplored world of polyubiquitin beyond Lys48
and Lys63 linkages. Nat Rev Mol Cell Biol. 13:508–523. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Husnjak K and Dikic I: Ubiquitin-binding
proteins: Decoders of ubiquitin-mediated cellular functions. Annu
Rev Biochem. 81:291–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Woelk T, Sigismund S, Penengo L and Polo
S: The ubiquitination code: A signalling problem. Cell Div.
2:112007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tan JM, Wong ES, Kirkpatrick DS,
Pletnikova O, Ko HS, Tay SP, Ho MW, Troncoso J, Gygi SP, Lee MK, et
al: Lysine 63-linked ubiquitination promotes the formation and
autophagic clearance of protein inclusions associated with
neurodegenerative diseases. Hum Mol Genet. 17:431–439. 2008.
View Article : Google Scholar
|
8
|
Nathan JA, Kim HT, Ting L, Gygi SP and
Goldberg AL: Why do cellular proteins linked to K63-polyubiquitin
chains not associate with proteasomes? EMBO J. 32:552–565. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ikeda F and Dikic I: Atypical ubiquitin
chains: new molecular signals. 'Protein Modifications: Beyond the
Usual Suspects' review series. EMBO Rep. 9:536–542. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Iyer LM, Koonin EV and Aravind L: Novel
predicted peptidases with a potential role in the ubiquitin
signaling pathway. Cell Cycle. 3:1440–1450. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Park JJ, Lim KH and Baek KH: Annexin-1
regulated by HAUSP is essential for UV-induced damage response.
Cell Death Dis. 6:e16542015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lim KH, Park JJ, Gu BH, Kim JO, Park SG
and Baek KH: HAUSP-nucleolin interaction is regulated by p53-Mdm2
complex in response to DNA damage response. Sci Rep. 5:127932015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Nijman SM, Luna-Vargas MP, Velds A,
Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and
functional inventory of deubiquitinating enzymes. Cell.
123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mevissen TE, Hospenthal MK, Geurink PP,
Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El
Oualid F, et al: OTU deubiquitinases reveal mechanisms of linkage
specificity and enable ubiquitin chain restriction analysis. Cell.
154:169–184. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun XX and Dai MS: Deubiquitinating enzyme
regulation of the p53 pathway: A lesson from Otub1. World J Biol
Chem. 5:75–84. 2014.PubMed/NCBI
|
16
|
Zhong X and Pittman RN: Ataxin-3 binds
VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum
Mol Genet. 15:2409–2420. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guterman A and Glickman MH:
Deubiquitinating enzymes are IN/(trinsic to proteasome function).
Curr Protein Pept Sci. 5:201–211. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cope GA, Suh GS, Aravind L, Schwarz SE,
Zipursky SL, Koonin EV and Deshaies RJ: Role of predicted
metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1.
Science. 298:608–611. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hu HY: Editorial: Protein ubiquitination
and deubiquitination. Curr Protein Pept Sci. 13:4132012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lim KH, Song MH and Baek KH: Decision for
cell fate: Deubiquitinating enzymes in cell cycle checkpoint. Cell
Mol Life Sci. 73:1439–1455. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kwon SK, Saindane M and Baek KH: p53
stability is regulated by diverse deubiquitinating enzymes. Biochim
Biophys Acta. 1868:404–411. 2017.PubMed/NCBI
|
22
|
Park CW and Ryu KY: Cellular ubiquitin
pool dynamics and homeostasis. BMB Rep. 47:475–482. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Henry NL and Hayes DF: Cancer biomarkers.
Mol Oncol. 6:140–146. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Edwards MC and Gibbs RA: Multiplex PCR:
Advantages, development, and applications. PCR Methods Appl.
3:S65–S75. 1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Z and Sun Y: Targeting p53 for novel
anticancer therapy. Transl Oncol. 3:1–12. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fridman JS and Lowe SW: Control of
apoptosis by p53. Oncogene. 22:9030–9040. 2003. View Article : Google Scholar
|
27
|
Dayal S, Sparks A, Jacob J, Allende-Vega
N, Lane DP and Saville MK: Suppression of the deubiquitinating
enzyme USP5 causes the accumulation of unanchored polyubiquitin and
the activation of p53. J Biol Chem. 284:5030–5041. 2009. View Article : Google Scholar :
|
28
|
Potu H, Peterson LF, Pal A, Verhaegen M,
Cao J, Talpaz M and Donato NJ: Usp5 links suppression of p53 and
FAS levels in melanoma to the BRAF pathway. Oncotarget.
5:5559–5569. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
30
|
Marchese FP, Grossi E, Marín-Béjar O,
Bharti SK, Raimondi I, González J, Martínez-Herrera DJ, Athie A,
Amadoz A, Brosh RM Jr, et al: A long noncoding RNA regulates sister
chromatid cohesion. Mol Cell. 63:397–407. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kessler BM and Edelmann MJ: PTMs in
conversation: Activity and function of deubiquitinating enzymes
regulated via post-translational modifications. Cell Biochem
Biophys. 60:21–38. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu
Y, Chen X, Li L, Wu S, Chen Y, et al: How is mRNA expression
predictive for protein expression? A correlation study on human
circulating monocytes. Acta Biochim Biophys Sin (Shanghai).
40:426–436. 2008. View Article : Google Scholar
|
33
|
Lakin ND and Jackson SP: Regulation of p53
in response to DNA damage. Oncogene. 18:7644–7655. 1999. View Article : Google Scholar
|
34
|
Amerik AY and Hochstrasser M: Mechanism
and function of deubiquitinating enzymes. Biochim Biophys Acta.
1695:189–207. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Reyes-Turcu FE, Ventii KH and Wilkinson
KD: Regulation and cellular roles of ubiquitin-specific
deubiquitinating enzymes. Annu Rev Biochem. 78:363–397. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Song L and Rape M: Reverse the curse - the
role of deubiquitination in cell cycle control. Curr Opin Cell
Biol. 20:156–163. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kennedy RD and D'Andrea AD: The Fanconi
Anemia/BRCA pathway: New faces in the crowd. Genes Dev.
19:2925–2940. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang JM: Emerging roles of
deubiquitinating enzymes in human cancer. Acta Pharmacol Sin.
28:1325–1330. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Han ES, Muller FL, Pérez VI, Qi W, Liang
H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, et al: The in vivo
gene expression signature of oxidative stress. Physiol Genomics.
34:112–126. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kishi H, Nakagawa K, Matsumoto M, Suga M,
Ando M, Taya Y and Yamaizumi M: Osmotic shock induces G1 arrest
through p53 phosphorylation at Ser33 by activated p38MAPK without
phosphorylation at Ser15 and Ser20. J Biol Chem. 276:39115–39122.
2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bieging KT, Mello SS and Attardi LD:
Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev
Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Pillet S, Lardeux M, Dina J, Grattard F,
Verhoeven P, Le Goff J, Vabret A and Pozzetto B: Comparative
evaluation of six commercialized multiplex PCR kits for the
diagnosis of respiratory infections. PLoS One. 8:e721742013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kaplun A, Krull M, Lakshman K, Matys V,
Lewicki B and Hogan JD: Establishing and validating regulatory
regions for variant annotation and expression analysis. BMC
Genomics. 17(Suppl 2): 3932016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S,
Ling Y and Zhou X: OTUD5 regulates p53 stability by
deubiquitinating p53. PLoS One. 8:e776822013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang
T, Bai L, Wang W, Chen M, Wang W, et al: USP4 inhibits p53 and
NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene.
35:2902–2912. 2016. View Article : Google Scholar
|
46
|
Sheng Y, Saridakis V, Sarkari F, Duan S,
Wu T, Arrowsmith CH and Frappier L: Molecular recognition of p53
and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 13:285–291. 2006.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu X, Yang X, Li Y, Zhao S, Li C, Ma P
and Mao B: Trip12 is an E3 ubiquitin ligase for USP7/HAUSP involved
in the DNA damage response. FEBS Lett. 590:4213–4222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yuan J, Luo K, Zhang L, Cheville JC and
Lou Z: USP10 regulates p53 localization and stability by
deubiquitinating p53. Cell. 140:384–396. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang L, Nemzow L, Chen H, Lubin A, Rong
X, Sun Z, Harris TK and Gong F: The deubiquitinating enzyme USP24
is a regulator of the UV damage response. Cell Reports. 10:140–147.
2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu YL, Zheng J, Tang LJ, Han W, Wang JM,
Liu DW and Tian QB: The deubiquitinating enzyme activity of USP22
is necessary for regulating HeLa cell growth. Gene. 572:49–56.
2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hock AK, Vigneron AM, Carter S, Ludwig RL
and Vousden KH: Regulation of p53 stability and function by the
deubiquitinating enzyme USP42. EMBO J. 30:4921–4930. 2011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Pirrone V, Mell J, Janto B and Wigdahl B:
Biomarkers of HIV Susceptibility and Disease Progression.
EBioMedicine. 1:99–100. 2014. View Article : Google Scholar
|
53
|
Kim K and Lee JH: Risk factors and
biomarkers of ischemic stroke in cancer patients. J Stroke.
16:91–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Al-Qazzaz NK, Ali SH, Ahmad SA, Chellappan
K, Islam MS and Escudero J: Role of EEG as biomarker in the early
detection and classification of dementia. Sci World J.
2014:9060382014. View Article : Google Scholar
|
55
|
Goossens N, Nakagawa S, Sun X and Hoshida
Y: Cancer biomarker discovery and validation. Transl Cancer Res.
4:256–269. 2015.PubMed/NCBI
|
56
|
Haynes HR, Camelo-Piragua S and Kurian KM:
Prognostic and predictive biomarkers in adult and pediatric
gliomas: Toward personalized treatment. Front Oncol. 4:472014.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Nalejska E, Mączyńska E and Lewandowska
MA: Prognostic and predictive biomarkers: Tools in personalized
oncology. Mol Diagn Ther. 18:273–284. 2014. View Article : Google Scholar : PubMed/NCBI
|