Implications of nestin in breast cancer pathogenesis (Review)
- Authors:
- Aleksandra Nowak
- Piotr Dziegiel
-
Affiliations: Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland - Published online on: June 14, 2018 https://doi.org/10.3892/ijo.2018.4441
- Pages: 477-487
This article is mentioned in:
Abstract
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bray F, McCarron P and Parkin DM: The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res. 6:229–239. 2004. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO and Jemal A: International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev. 24:1495–1506. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ekwueme DU, Guy GP Jr, Rim SH, White A, Hall IJ, Fairley TL and Dean HD: Health and economic impact of breast cancer mortality in young women, 1970–2008. Am J Prev Med. 46:71–79. 2014. View Article : Google Scholar | |
Dai X, Xiang L, Li T and Bai Z: Cancer Hallmarks, Biomarkers and breast cancer molecular subtypes. J Cancer. 7:1281–1294. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zardavas D, Irrthum A, Swanton C and Piccart M: Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol. 12:381–394. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koren S and Bentires-Alj M: Breast tumor heterogeneity: Source of fitness, Hurdle for Therapy. Mol Cell. 60:537–546. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lacroix M, Toillon RA and Leclercq G: Stable 'portrait' of breast tumors during progression: Data from biology, pathology and genetics. Endocr Relat Cancer. 11:497–522. 2004. View Article : Google Scholar : PubMed/NCBI | |
Simpson PT, Reis-Filho JS, Gale T and Lakhani SR: Molecular evolution of breast cancer. J Pathol. 205:248–254. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 100:8418–8423. 2003. View Article : Google Scholar : PubMed/NCBI | |
Turner NC and Reis-Filho JS: Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 25:5846–5853. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Zhang Q, Wang X, Yang X, Wang X, Huang Z, Jiao Y and Wang J: Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int J Oncol. 48:1016–1028. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gnant M, Harbeck N and Thomssen C: St. Gallen 2011: Summary of the Consensus Discussion. Breast Care (Basel). 6:136–141. 2011. View Article : Google Scholar | |
Raman V, Fuentes Lorenzo JL, Stashenko EE, Levy M, Levy MM and Camarillo IG: Lippia origanoides extract induces cell cycle arrest and apoptosis and suppresses NF-κB signaling in triple-negative breast cancer cells. Int J Oncol. 51:1801–1808. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee A and Djamgoz MBA: Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev. 62:110–122. 2018. View Article : Google Scholar | |
Yao H, He G, Yan S, Chen C, Song L, Rosol TJ and Deng X: Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget. 8:1913–1924. 2017. | |
Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, Díez M, Viladot M, Arance A and Muñoz M: Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 24(Suppl 2): S26–S35. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR and Hanby A: Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology. 49:22–34. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW and Bissell MJ: Myoepithelial cells: Their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia. 10:261–272. 2005. View Article : Google Scholar | |
Badowska-Kozakiewicz AM and Budzik MP: Immunohisto-chemical characteristics of basal-like breast cancer. Contemp Oncol (Pozn). 20:436–443. 2016. | |
Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, et al: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 10:5367–5374. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM and Nielsen TO: Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 14:1368–1376. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prat A, Adamo B, Cheang MC, Anders CK, Carey LA and Perou CM: Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 18:123–133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lachapelle J and Foulkes W: Triple-negative and basal-like breast cancer: Implications for oncologists. Curr Oncol. 18:161–164. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bertucci F, Finetti P, Viens P and Birnbaum D: Difference in therapeutic response between basal and nonbasal triple-negative breast cancers. Oncologist. 18:1060–1061. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prat A and Perou CM: Deconstructing the molecular portraits of breast cancer. Mol Oncol. 5:5–23. 2011. View Article : Google Scholar | |
Sheffield BS, Kos Z, Asleh-Aburaya K, Wang XQ, Leung S, Gao D, Won J, Chow C, Rachamadugu R, Stijleman I, et al: Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor. Breast Cancer Res Treat. 155:483–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prabhu JS, Korlimarla A, Desai K, Alexander A, Raghavan R, Anupama C, Dendukuri N, Manjunath S, Correa M, Raman N, et al: A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. J Cancer. 5:156–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iwamoto T, Booser D, Valero V, Murray JL, Koenig K, Esteva FJ, Ueno NT, Zhang J, Shi W, Qi Y, et al: Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol. 30:729–734. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nadji M, Gomez-Fernandez C, Ganjei-Azar P and Morales AR: Immunohistochemistry of estrogen and progesterone receptors reconsidered: Experience with 5,993 breast cancers. Am J Clin Pathol. 123:21–27. 2005. View Article : Google Scholar : PubMed/NCBI | |
Khoshnoud MR, Löfdahl B, Fohlin H, Fornander T, Stål O, Skoog L, Bergh J and Nordenskjöld B: Immunohistochemistry compared to cytosol assays for determination of estrogen receptor and prediction of the long-term effect of adjuvant tamoxifen. Breast Cancer Res Treat. 126:421–430. 2011. View Article : Google Scholar | |
Asleh K, Won JR, Gao D, Voduc KD and Nielsen TO: Nestin expression in breast cancer: Association with prognosis and subtype on 3641 cases with long-term follow-up. Breast Cancer Res Treat. 168:107–115. 2018. View Article : Google Scholar | |
Asleh-Aburaya K, Sheffield BS, Kos Z, Won JR, Wang XQ, Gao D, Wolber R, Gilks CB, Bernard PS, Chia SK, et al: Basal biomarkers nestin and INPP4b identify intrinsic subtypes accurately in breast cancers that are weakly positive for oestrogen receptor. Histopathology. 70:185–194. 2017. View Article : Google Scholar | |
Michalczyk K and Ziman M: Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol. 20:665–671. 2005.PubMed/NCBI | |
Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR and Wobus AM: Nestin expression - a property of multi-lineage progenitor cells? Cell Mol Life Sci. 61:2510–2522. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mokrý J and Nĕmecek S: Immunohistochemical detection of intermediate filament nestin. Acta Medica (Hradec Kralove). 41:73–80. 1998. | |
Cattaneo E and McKay R: Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature. 347:762–765. 1990. View Article : Google Scholar : PubMed/NCBI | |
Lendahl U, Zimmerman LB and McKay RD: CNS stem cells express a new class of intermediate filament protein. Cell. 60:585–595. 1990. View Article : Google Scholar : PubMed/NCBI | |
Krum JM and Rosenstein JM: Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds. Exp Neurol. 160:348–360. 1999. View Article : Google Scholar | |
Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, Eriksson JE and Kalimo H: The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol. 60:588–597. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lindqvist J, Torvaldson E, Gullmets J, Karvonen H, Nagy A, Taimen P and Eriksson JE: Nestin contributes to skeletal muscle homeostasis and regeneration. J Cell Sci. 130:2833–2842. 2017. View Article : Google Scholar : PubMed/NCBI | |
About I, Laurent-Maquin D, Lendahl U and Mitsiadis TA: Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol. 157:287–295. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lin RC, Matesic DF, Marvin M, McKay RD and Brüstle O: Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol Dis. 2:79–85. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sejersen T and Lendahl U: Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci. 106:1291–1300. 1993.PubMed/NCBI | |
Kachinsky AM, Dominov JA and Miller JB: Myogenesis and the intermediate filament protein, nestin. Dev Biol. 165:216–228. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kachinsky AM, Dominov JA and Miller JB: Intermediate filaments in cardiac myogenesis: Nestin in the developing mouse heart. J Histochem Cytochem. 43:843–847. 1995. View Article : Google Scholar : PubMed/NCBI | |
Terling C, Rass A, Mitsiadis TA, Fried K, Lendahl U and Wroblewski J: Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol. 39:947–956. 1995.PubMed/NCBI | |
Fröjdman K, Pelliniemi LJ, Lendahl U, Virtanen I and Eriksson JE: The intermediate filament protein nestin occurs transiently in differentiating testis of rat and mouse. Differentiation. 61:243–249. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Müller B, Vallejo M, Thomas MK and Habener JF: Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes. 50:521–533. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vanderwinden JM, Gillard K, De Laet MH, Messam CA and Schiffmann SN: Distribution of the intermediate filament nestin in the muscularis propria of the human gastrointestinal tract. Cell Tissue Res. 309:261–268. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vogel W, Grünebach F, Messam CA, Kanz L, Brugger W and Bühring HJ: Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica. 88:126–133. 2003.PubMed/NCBI | |
Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, Katsuoka K and Hoffman RM: Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res. 65:5352–5357. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mokrý J, Cízková D, Filip S, Ehrmann J, Osterreicher J, Kolár Z and English D: Nestin expression by newly formed human blood vessels. Stem Cells Dev. 13:658–664. 2004. View Article : Google Scholar | |
Nowak A, Grzegrzolka J, Paprocka M, Piotrowska A, Rys J, Matkowski R and Dziegiel P: Nestin-positive microvessel density is an independent prognostic factor in breast cancer. Int J Oncol. 51:668–676. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD and Trojanowski JQ: Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest. 66:303–313. 1992.PubMed/NCBI | |
Dahlstrand J, Collins VP and Lendahl U: Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52:5334–5341. 1992.PubMed/NCBI | |
Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, Godwin AK, Wells W and DiRenzo J: Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res. 67:501–510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI and Berman DM: Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res. 67:9199–9206. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M and Ishiwata T: Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther. 11:512–523. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sterlacci W, Savic S, Fiegl M, Obermann E and Tzankov A: Putative stem cell markers in non-small-cell lung cancer: A clinicopathologic characterization. J Thorac Oncol. 9:41–49. 2014. View Article : Google Scholar | |
Qin Q, Sun Y, Fei M, Zhang J, Jia Y, Gu M, Xia R, Chen S and Deng A: Expression of putative stem marker nestin and CD133 in advanced serous ovarian cancer. Neoplasma. 59:310–315. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ishiwata T, Matsuda Y and Naito Z: Nestin in gastrointestinal and other cancers: Effects on cells and tumor angiogenesis. World J Gastroenterol. 17:409–418. 2011. View Article : Google Scholar : PubMed/NCBI | |
Piras F, Perra MT, Murtas D, Minerba L, Floris C, Maxia C, Demurtas P, Ugalde J, Ribatti D and Sirigu P: The stem cell marker nestin predicts poor prognosis in human melanoma. Oncol Rep. 23:17–24. 2010. | |
Zhong B, Wang T, Lun X, Zhang J, Zheng S, Yang W, Li W, Xiang AP and Chen Z: Contribution of nestin positive esophageal squamous cancer cells on malignant proliferation, apoptosis, and poor prognosis. Cancer Cell Int. 14:572014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Lai Y, Fan J, Shen C and Che G: Clinicopathological and prognostic significance of Nestin expression in patients with non-small cell lung cancer: A systematic review and meta-analysis. Clin Exp Med. 17:161–174. 2017. View Article : Google Scholar | |
Neradil J and Veselska R: Nestin as a marker of cancer stem cells. Cancer Sci. 106:803–811. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guérette D, Khan PA, Savard PE and Vincent M: Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol. 7:1642007. View Article : Google Scholar : PubMed/NCBI | |
Chou YH, Khuon S, Herrmann H and Goldman RD: Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell. 14:1468–1478. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sjöberg G, Jiang WQ, Ringertz NR, Lendahl U and Sejersen T: Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res. 214:447–458. 1994. View Article : Google Scholar : PubMed/NCBI | |
Holle AW, Kalafat M, Ramos AS, Seufferlein T, Kemkemer R and Spatz JP: Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Sci Rep. 7:451522017. View Article : Google Scholar : PubMed/NCBI | |
Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, et al: Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem Biophys Res Commun. 478:1323–1329. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, Pant HC and Eriksson JE: Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol. 23:5090–5106. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren CM, Mikhailov A, Hellman J, Chou YH, Lendahl U, Goldman RD and Eriksson JE: Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem. 276:16456–16463. 2001. View Article : Google Scholar : PubMed/NCBI | |
Matsuda Y, Ishiwata T, Yoshimura H, Yamahatsu K, Minamoto T and Arai T: Nestin phosphorylation at threonines 315 and 1299 correlates with proliferation and metastasis of human pancreatic cancer. Cancer Sci. 108:354–361. 2017. View Article : Google Scholar : | |
Pozo K and Bibb JA: The Emerging Role of Cdk5 in Cancer. Trends Cancer. 2:606–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chiker S, Pennaneach V, Loew D, Dingli F, Biard D, Cordelières FP, Gemble S, Vacher S, Bieche I, Hall J, et al: Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients. Cell Cycle. 14:3066–3078. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu DX, Feng J, Hou P, Yao R, Zhang Y, et al: CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression. Sci Rep. 3:29322013. View Article : Google Scholar | |
Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD and Eriksson JE: A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J. 25:4808–4819. 2006. View Article : Google Scholar : PubMed/NCBI | |
Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, Witek RP, Agboola KM, Jung Y, Michelotti GA and Diehl AM: Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 285:36551–36560. 2010. View Article : Google Scholar : PubMed/NCBI | |
Habib JG and O'Shaughnessy JA: The hedgehog pathway in triple-negative breast cancer. Cancer Med. 5:2989–3006. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Chong YS, Choolani MA, Cregan MD and Chan JK: Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One. 5:e144212010. View Article : Google Scholar | |
Patki S, Kadam S, Chandra V and Bhonde R: Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 23:35–40. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, Mitoulas LR, Piper KM, Choolani MA, Chong YS, et al: Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 329:129–136. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hosseini SM, Talaei-Khozani T, Sani M and Owrangi B: Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int. 2014:8078962014. View Article : Google Scholar : PubMed/NCBI | |
Bussolati B, Grange C, Sapino A and Camussi G: Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med. 13:309–319. 2009. View Article : Google Scholar | |
Zhao Z, Lu P, Zhang H, Xu H, Gao N, Li M and Liu C: Nestin positively regulates the Wnt/β-catenin pathway and the proliferation, survival and invasiveness of breast cancer stem cells. Breast Cancer Res. 16:4082014. View Article : Google Scholar | |
Apostolou P, Toloudi M, Chatziioannou M, Ioannou E and Papasotiriou I: Cancer stem cells stemness transcription factors expression correlates with breast cancer disease stage. Curr Stem Cell Res Ther. 7:415–419. 2012. View Article : Google Scholar : PubMed/NCBI | |
Parry S, Savage K, Marchiò C and Reis-Filho JS: Nestin is expressed in basal-like and triple negative breast cancers. J Clin Pathol. 61:1045–1050. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Chen B, Zhu J, Zhang R, Yao F, Jin F, Xu H and Lu P: Clinical implications for nestin protein expression in breast cancer. Cancer Sci. 101:815–819. 2010. View Article : Google Scholar | |
Piras F, Ionta MT, Lai S, Perra MT, Atzori F, Minerba L, Pusceddu V, Maxia C, Murtas D, Demurtas P, et al: Nestin expression associates with poor prognosis and triple negative phenotype in locally advanced (T4) breast cancer. Eur J Histochem. 55:e392011. View Article : Google Scholar | |
Won JR, Gao D, Chow C, Cheng J, Lau SY, Ellis MJ, Perou CM, Bernard PS and Nielsen TO: A survey of immunohistochemical biomarkers for basal-like breast cancer against a gene expression profile gold standard. Mod Pathol. 26:1438–1450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tampaki EC, Tampakis A, Nonni A, Kontzoglou K, Patsouris E and Kouraklis G: Nestin and cluster of differentiation 146 expression in breast cancer: Predicting early recurrence by targeting metastasis? Tumour Biol. 39:1010428317691181. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao N, Xu H, Liu C, Xu H, Chen G, Wang X, Li Y and Wang Y: Nestin: Predicting specific survival factors for breast cancer. Tumour Biol. 35:1751–1755. 2014. View Article : Google Scholar : PubMed/NCBI | |
Krüger K, Wik E, Knutsvik G, Nalwoga H, Klingen TA, Arnes JB, Chen Y, Mannelqvist M, Dimitrakopoulou K, Stefansson IM, et al: Expression of Nestin associates with BRCA1 mutations, a basal-like phenotype and aggressive breast cancer. Sci Rep. 7:10892017. View Article : Google Scholar : PubMed/NCBI | |
Nowak A, Grzegrzółka J, Kmiecik A, Piotrowska A, Matkowski R and Dzięgiel P: Role of nestin expression in angiogenesis and breast cancer progression. Int J Oncol. 52:527–535. 2018.PubMed/NCBI | |
Huang A, Cao S and Tang L: The tumor microenvironment and inflammatory breast cancer. J Cancer. 8:1884–1891. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Uden DJ, van Laarhoven HW, Westenberg AH, de Wilt JH and Blanken-Peeters CF: Inflammatory breast cancer: An overview. Crit Rev Oncol Hematol. 93:116–126. 2015. View Article : Google Scholar | |
Xiao Y, Ye Y, Yearsley K, Jones S and Barsky SH: The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol. 173:561–574. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rögelsperger O, Ekmekcioglu C, Jäger W, Klimpfinger M, Königsberg R, Krenbek D, Sellner F and Thalhammer T: Coexpression of the melatonin receptor 1 and nestin in human breast cancer specimens. J Pineal Res. 46:422–432. 2009. View Article : Google Scholar : PubMed/NCBI | |
Laakso M, Loman N, Borg A and Isola J: Cytokeratin 5/14-positive breast cancer: True basal phenotype confined to BRCA1 tumors. Mod Pathol. 18:1321–1328. 2005. View Article : Google Scholar : PubMed/NCBI | |
Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, et al: Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 24:157–167. 2011. View Article : Google Scholar | |
Foulkes WD, Metcalfe K, Hanna W, Lynch HT, Ghadirian P, Tung N, Olopade O, Weber B, McLennan J, Olivotto IA, et al: Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer. 98:1569–1577. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 121:2750–2767. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zimmer AS, Gillard M, Lipkowitz S and Lee JM: Update on PARP inhibitors in breast cancer. Curr Treat Options Oncol. 19:212018. View Article : Google Scholar : PubMed/NCBI | |
Sihto H, Lundin J, Lundin M, Lehtimäki T, Ristimäki A, Holli K, Sailas L, Kataja V, Turpeenniemi-Hujanen T, Isola J, et al: Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: A nationwide cohort study. Breast Cancer Res. 13:R872011. View Article : Google Scholar : PubMed/NCBI | |
de Groot AE, Roy S, Brown JS, Pienta KJ and Amend SR: Revisiting Seed and Soil: Examining the primary tumor and cancer cell foraging in metastasis. Mol Cancer Res. 15:361–370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Custódio-Santos T, Videira M and Brito MA: Brain metastasization of breast cancer. Biochim Biophys Acta. 1868:132–147. 2017.PubMed/NCBI | |
Meisen WH, Dubin S, Sizemore ST, Mathsyaraja H, Thies K, Lehman NL, Boyer P, Jaime-Ramirez AC, Elder JB, Powell K, et al: Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther. 14:307–314. 2015. View Article : Google Scholar : | |
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 10:515–527. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sin WC and Lim CL: Breast cancer stem cells-from origins to targeted therapy. Stem Cell Investig. 4:962017. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM and Dallaglio K: Cancer stem cells and the tumor microenvironment: Interplay in tumor heterogeneity. Connect Tissue Res. 56:414–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shima H, Yamada A, Ishikawa T and Endo I: Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland Surg. 6:82–88. 2017. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI | |
Singh SK, Clarke ID, Hide T and Dirks PB: Cancer stem cells in nervous system tumors. Oncogene. 23:7267–7273. 2004. View Article : Google Scholar : PubMed/NCBI | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang L, Song Y, Wang S, Huang X, Xuan Q, Kang X and Zhang Q: CD44+/CD24− phenotype predicts a poor prognosis in triple-negative breast cancer. Oncol Lett. 14:5890–5898. 2017.PubMed/NCBI | |
Ma F, Li H, Wang H, Shi X, Fan Y, Ding X, Lin C, Zhan Q, Qian H and Xu B: Enriched CD44(+)/CD24(−) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett. 353:153–159. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Cao X, Zhang Y, Xu H, Zhang R, Wu Y, Lu P and Jin F: Co-expression of Oct-4 and Nestin in human breast cancers. Mol Biol Rep. 39:5875–5881. 2012. View Article : Google Scholar | |
Xiao Y, Ye Y, Zou X, Jones S, Yearsley K, Shetuni B, Tellez J and Barsky SH: The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene. 30:287–300. 2011. View Article : Google Scholar | |
Chang R, Zhang P and You J: Post-translational modifications of EMT transcriptional factors in cancer metastasis. Open Life Sci. 11:237–243. 2016. | |
Grzegrzolka J, Biala M, Wojtyra P, Kobierzycki C, Olbromski M, Gomulkiewicz A, Piotrowska A, Rys J, Podhorska-Okolow M and Dziegiel P: Expression of EMT markers SLUG and TWIST in breast cancer. Anticancer Res. 35:3961–3968. 2015.PubMed/NCBI | |
Liang Q, Li W, Zhao Z and Fu Q: Advancement of Wnt signal pathway and the target of breast cancer. Open Life Sci. 11:98–104. 2016. | |
Luo G, Huang D, Tao R and Chen J: The role of E-cadherin - 160C/A polymorphism in breast cancer. Open Life Sci. 11:110–115. 2016. | |
Odiba A, Ottah V, Anunobi O, Edeke AA, Ukegbu CY, Chukwunonyelum I, Onosakponome I and Joshua PE: Research progress in oncology. Highlighting and exploiting the roles of several strategic proteins in understanding cancer biology. Open Life Sci. 11:331–347. 2016. | |
de Sousa E Melo F and Vermeulen L: Wnt Signaling in cancer stem cell biology. Cancers (Basel). 8:82016. | |
Sun M, Zhang N, Wang X, Li Y, Qi W, Zhang H, Li Z and Yang Q: Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell Biosci. 6:442016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang N, Huo Q, Sun M, Dong L, Zhang Y, Xu G and Yang Q: Huaier aqueous extract inhibits stem-like characteristics of MCF7 breast cancer cells via inactivation of hedgehog pathway. Tumour Biol. 35:10805–10813. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hatsell S and Frost AR: Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 12:163–173. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Liu S, Zhu R, Li B, Zhu Z, Yang J and Song C: SOX10 induced Nestin expression regulates cancer stem cell properties of TNBC cells. Biochem Biophys Res Commun. 485:522–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dravis C, Spike BT, Harrell JC, Johns C, Trejo CL, Southard-Smith EM, Perou CM and Wahl GM: Sox10 regulates stem/progenitor and mesenchymal cell states in mammary epithelial cells. Cell Reports. 12:2035–2048. 2015. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P: Angiogenesis in life, disease and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krupkova O Jr, Loja T, Zambo I and Veselska R: Nestin expression in human tumors and tumor cell lines. Neoplasma. 57:291–298. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krüger K, Stefansson IM, Collett K, Arnes JB, Aas T and Akslen LA: Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast. 22:282–288. 2013. View Article : Google Scholar | |
Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C and Kieda C: CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A. 79:594–602. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alliot F, Rutin J, Leenen PJ and Pessac B: Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J Neurosci Res. 58:367–378. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa S, Miki Y, Miyashita M, Hata S, Takahashi Y, Rai Y, Sagara Y, Ohi Y, Hirakawa H, Tamaki K, et al: Tumor micro-environment in invasive lobular carcinoma: Possible therapeutic targets. Breast Cancer Res Treat. 155:65–75. 2016. View Article : Google Scholar | |
Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK and McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 160:985–1000. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ikhapoh IA, Pelham CJ and Agrawal DK: Sry-type HMG box 18 contributes to the differentiation of bone marrow-derived mesenchymal stem cells to endothelial cells. Differentiation. 89:87–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
Downes M and Koopman P: SOX18 and the transcriptional regulation of blood vessel development. Trends Cardiovasc Med. 11:318–324. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pula B, Olbromski M, Wojnar A, Gomulkiewicz A, Witkiewicz W, Ugorski M, Dziegiel P and Podhorska-Okolow M: Impact of SOX18 expression in cancer cells and vessels on the outcome of invasive ductal breast carcinoma. Cell Oncol (Dordr). 36:469–483. 2013. View Article : Google Scholar | |
Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, Yao Z, Dong XY, Zhao N and Liu N: CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 32:544–553. 2013. View Article : Google Scholar | |
Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and Tabar V: Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 468:829–833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Folberg R, Hendrix MJ and Maniotis AJ: Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 156:361–381. 2000. View Article : Google Scholar : PubMed/NCBI | |
Baluk P, Hashizume H and McDonald DM: Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 15:102–111. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shirakawa K, Kobayashi H, Heike Y, Kawamoto S, Brechbiel MW, Kasumi F, Iwanaga T, Konishi F, Terada M and Wakasugi H: Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res. 62:560–566. 2002.PubMed/NCBI | |
Narita K, Matsuda Y, Seike M, Naito Z, Gemma A and Ishiwata T: Nestin regulates proliferation, migration, invasion and stemness of lung adenocarcinoma. Int J Oncol. 44:1118–1130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Akiyama M, Matsuda Y, Ishiwata T, Naito Z and Kawana S: Inhibition of the stem cell marker nestin reduces tumor growth and invasion of malignant melanoma. J Invest Dermatol. 133:1384–1387. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsuda Y, Ishiwata T, Yoshimura H, Yamashita S, Ushijima T and Arai T: Systemic administration of small interfering RNA targeting human nestin inhibits pancreatic cancer cell proliferation and metastasis. Pancreas. 45:93–100. 2016. View Article : Google Scholar |