1
|
Bosch FX, Ribes J, Díaz M and Cléries R:
Primary liver cancer: Worldwide incidence and trends.
Gastroenterology. 127(Suppl 1): S5–S16. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ross JA and Gurney JG: Hepatoblastoma
incidence in the United States from 1973 to 1992. Med Pediatr
Oncol. 30:141–142. 1998. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fuchs J, Rydzynski J, Von Schweinitz D,
Bode U, Hecker H, Weinel P, Bürger D, Harms D, Erttmann R, Oldhafer
K, et al: Study Committee of the Cooperative Pediatric Liver Tumor
Study Hb 94 for the German Society for Pediatric Oncology and
Hematology: Pretreatment prognostic factors and treatment results
in children with hepatoblastoma: A report from the German
Cooperative Pediatric Liver Tumor Study HB 94. Cancer. 95:172–182.
2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Suita S, Tajiri T, Takamatsu H, Mizote H,
Nagasaki A, Inomata Y, Hara T, Okamura J, Miyazaki S, Kawakami K,
et al: Improved survival outcome for hepatoblastoma based on an
optimal chemotherapeutic regimen - a report from the study group
for pediatric solid malignant tumors in the Kyushu area. J Pediatr
Surg. 39:195–198. 2004. View Article : Google Scholar
|
5
|
Reynolds M: Conversion of unresectable to
resectable hepatoblastoma and long-term follow-up study. World J
Surg. 19:814–816. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Claycombe KJ, Roemmich JN, Johnson L,
Vomhof-DeKrey EE and Johnson WT: Skeletal muscle Sirt3 expression
and mitochondrial respiration are regulated by a prenatal
low-protein diet. J Nutr Biochem. 26:184–189. 2015. View Article : Google Scholar
|
7
|
Jiang DQ and Wang Y, Li MX, Ma YJ and Wang
Y: SIRT3 in neural stem cells attenuates microglia
activation-induced oxidative stress injury through mitochondrial
pathway. Front Cell Neurosci. 11:72017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kim HS, Patel K, Muldoon-Jacobs K, Bisht
KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage
J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor
suppressor required for maintenance of mitochondrial integrity and
metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sundaresan NR, Samant SA, Pillai VB,
Rajamohan SB and Gupta MP: SIRT3 is a stress-responsive deacetylase
in cardiomyocytes that protects cells from stress-mediated cell
death by deacetylation of Ku70. Mol Cell Biol. 28:6384–6401. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Qiao A, Wang K, Yuan Y, Guan Y, Ren X, Li
L, Chen X, Li F, Chen AF and Zhou J: Sirt3-mediated mitophagy
protects tumor cells against apoptosis under hypoxia. Oncotarget.
7:43390–43400. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qiu X, Brown K, Hirschey MD, Verdin E and
Chen D: Calorie restriction reduces oxidative stress by
SIRT3-mediated SOD2 activation. Cell Metab. 12:662–667. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Haigis MC, Deng CX, Finley LWS, Kim HS and
Gius D: SIRT3 is a mitochondrial tumor suppressor: A scientific
tale that connects aberrant cellular ROS, the Warburg effect, and
carcinogenesis. Cancer Res. 72:2468–2472. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Iijima S, Yudasaka M, Yamada R, Bandow S,
Suenaga K, Kokai F and Takahashi K: Nano-aggregates of
single-walled graphitic carbon nano-horns. Chem Phys Lett.
309:165–170. 1999. View Article : Google Scholar
|
14
|
Murakami T and Tsuchida K: Recent advances
in inorganic nanoparticle-based drug delivery systems. Mini Rev Med
Chem. 8:175–183. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chakrabarti M, Kiseleva R, Vertegel A and
Ray SK: Carbon nanomaterials for drug delivery and cancer therapy.
J Nanosci Nanotechnol. 15:5501–5511. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cao Y, Zhang Y and Zhao M: Single-walled
carbon nanohorns inhibit proliferation of conjunctival melanoma
cell lines CRMM-1 and involved in energy metabolism. J Nanosci
Nanotechnol. 15:1821–1830. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li L, Zhang J, Yang Y, Wang Q, Gao L, Yang
Y, Chang T, Zhang X, Xiang G, Cao Y, et al: Single-wall carbon
nanohorns inhibited activation of microglia induced by
lipopolysaccharide through blocking of Sirt3. Nanoscale Res Lett.
8:1002013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang J, Sun Q, Bo J, Huang R, Zhang M,
Xia Z, Ju L and Xiang G: Single-walled carbon nanohorn (SWNH)
aggregates inhibited proliferation of human liver cell lines and
promoted apoptosis, especially for hepatoma cell lines. Int J
Nanomedicine. 9:759–773. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Datler C, Pazarentzos E, Mahul-Mellier AL,
Chaisaklert W, Hwang MS, Osborne F and Grimm S: CKMT1 regulates the
mitochondrial permeability transition pore in a process that
provides evidence for alternative forms of the complex. J Cell Sci.
127:1816–1828. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zamzami N and Kroemer G: The mitochondrion
in apoptosis: How Pandora's box opens. Nat Rev Mol Cell Biol.
2:67–71. 2001. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Susin SA, Zamzami N and Kroemer G:
Mitochondria as regulators of apoptosis: Doubt no more. Biochim
Biophys Acta. 1366:151–165. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cotter TG, Lennon SV, Glynn JG and Martin
SJ: Cell death via apoptosis and its relationship to growth,
development and differentiation of both tumour and normal cells.
Anticancer Res. 10:1153–1159. 1990.PubMed/NCBI
|
23
|
Wong RS: Apoptosis in cancer: from
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ventura-Clapier R, Moulin M, Piquereau J,
Lemaire C, Mericskay M, Veksler V and Garnier A: Mitochondria: A
central target for sex differences in pathologies. Clin Sci. Lond.
131:803–822. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Burke PJ: Mitochondria, bioenergetics and
apoptosis in cancer. Trends Cancer. 3:857–870. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zsíros J, Maibach R, Shafford E, Brugieres
L, Brock P, Czauderna P, Roebuck D, Childs M, Zimmermann A,
Laithier V, et al: Successful treatment of childhood high-risk
hepatoblastoma with dose-intensive multiagent chemotherapy and
surgery: Final results of the SIOPEL-3HR study. J Clin Oncol.
28:2584–2590. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pritchard J, Brown J, Shafford E,
Perilongo G, Brock P, Dicks-Mireaux C, Keeling J, Phillips A, Vos A
and Plaschkes J: Cisplatin, doxorubicin, and delayed surgery for
childhood hepatoblastoma: A successful approach - results of the
first prospective study of the International Society of Pediatric
Oncology. J Clin Oncol. 18:3819–3828. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Perilongo G, Shafford E and Plaschkes J:
Liver Tumour Study Group of the International Society of Paediatric
Oncology: SIOPEL trials using preoperative chemotherapy in
hepatoblastoma. Lancet Oncol. 1:94–100. 2000. View Article : Google Scholar
|
29
|
von Schweinitz D: Hepatoblastoma: Recent
developments in research and treatment. Semin Pediatr Surg.
21:21–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu ZB, Zhou B, Wang HY, Zhang HL, Liu LX,
Zhu DW and Leng XG: Effect of functionalized multi-walled carbon
nanotubes on L02 cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.
32:449–455. 2010.In Chinese. PubMed/NCBI
|
31
|
Matsuda S, Matsui S, Shimizu Y and Matsuda
T: Genotoxicity of colloidal fullerene C60. Environ Sci
Technol. 45:4133–4138. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhou F, Xing D, Wu B, Wu S, Ou Z and Chen
WR: New insights of transmembranal mechanism and subcellular
localization of noncovalently modified single-walled carbon
nanotubes. Nano Lett. 10:1677–1681. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ajima K, Murakami T, Mizoguchi Y, Tsuchida
K, Ichihashi T, Iijima S and Yudasaka M: Enhancement of in vivo
anticancer effects of cisplatin by incorporation inside single-wall
carbon nanohorns. ACS Nano. 2:2057–2064. 2008. View Article : Google Scholar
|
34
|
Zhang JY, Deng YN, Zhang M, Su H and Qu
QM: SIRT3 acts as a neuroprotective agent in rotenone-induced
Parkinson cell model. Neurochem Res. 41:1761–1773. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Iijima T: Mitochondrial membrane potential
and ischemic neuronal death. Neurosci Res. 55:234–243. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu Y, Liu YL, Cheng W, Yin XM and Jiang
B: The expression of SIRT3 in primary hepatocellular carcinoma and
the mechanism of its tumor suppressing effects. Eur Rev Med
Pharmacol Sci. 21:978–998. 2017.PubMed/NCBI
|
37
|
Tao R, Vassilopoulos A, Parisiadou L, Yan
Y and Gius D: Regulation of MnSOD enzymatic activity by Sirt3
connects the mitochondrial acetylome signaling networks to aging
and carcinogenesis. Antioxid Redox Signal. 20:1646–1654. 2014.
View Article : Google Scholar :
|
38
|
Barbieri E, Battistelli M, Casadei L,
Vallorani L, Piccoli G, Guescini M, Gioacchini AM, Polidori E,
Zeppa S, Ceccaroli P, et al: Morphofunctional and biochemical
approaches for studying mitochondrial changes during myoblasts
differentiation. J Aging Res. 2011.845379:2011.
|
39
|
Maldonado EN and Lemasters JJ: Warburg
revisited: Regulation of mitochondrial metabolism by
voltage-dependent anion channels in cancer cells. J Pharmacol Exp
Ther. 342:637–641. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schug ZT, Peck B, Jones DT, Zhang Q,
Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K,
et al: Acetyl-CoA synthetase 2 promotes acetate utilization and
maintains cancer cell growth under metabolic stress. Cancer Cell.
27:57–71. 2015. View Article : Google Scholar : PubMed/NCBI
|