1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar
|
2
|
Eggermont AM and Kirkwood JM:
Re-evaluating the role of dacarbazine in metastatic melanoma: What
have we learned in 30 years. Eur J Cancer. 40:1825–1836. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren
W, Li C, Feng Y, Feng Z, Wang H, et al: Nifuroxazide prompts
antitumor immune response of TCL-loaded DC in mice with
orthotopically-implanted hepatocarcinoma. Oncol Rep. 37:3405–3414.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Del Barco S, Vazquez-Martin A, Cufí S,
Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B
and Menendez JA: Metformin: Multi-faceted protection against
cancer. Oncotarget. 2:896–917. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon
JH, Moon JO, Chung HY, Kim GY, Choi YH, Copple BL, et al: Aspirin
induces apoptosis in vitro and inhibits tumor growth of human
hepatocellular carcinoma cells in a nude mouse xenograft model. Int
J Oncol. 40:1298–1304. 2012. View Article : Google Scholar
|
6
|
Triscott J, Lee C, Hu K, Fotovati A, Berns
R, Pambid M, Luk M, Kast RE, Kong E, Toyota E, et al: Disulfiram, a
drug widely used to control alcoholism, suppresses the self-renewal
of glioblastoma and over-rides resistance to temozolomide.
Oncotarget. 3:1112–1123. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Egolf A and Coffey BJ: Current
pharmacotherapeutic approaches for the treatment of Tourette
syndrome. Drugs Today (Barc). 50:159–179. 2014. View Article : Google Scholar
|
8
|
Nelson EA, Walker SR, Xiang M, Weisberg E,
Bar-Natan M, Barrett R, Liu S, Kharbanda S, Christie AL, Nicolais
M, et al: The STAT5 inhibitor pimozide displays efficacy in models
of acute myelogenous leukemia driven by FLT3 mutations. Genes
Cancer. 3:503–511. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nelson EA, Walker SR, Weisberg E,
Bar-Natan M, Barrett R, Gashin LB, Terrell S, Klitgaard JL, Santo
L, Addorio MR, et al: The STAT5 inhibitor pimozide decreases
survival of chronic myelogenous leukemia cells resistant to kinase
inhibitors. Blood. 117:3421–3429. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Strobl JS, Kirkwood KL, Lantz TK, Lewine
MA, Peterson VA and Worley JF III: Inhibition of human breast
cancer cell proliferation in tissue culture by the neuroleptic
agents pimozide and thioridazine. Cancer Res. 50:5399–5405.
1990.PubMed/NCBI
|
11
|
Sun J, Jiang J, Lu K, Chen Q, Tao D and
Chen Z: Therapeutic potential of ADAM17 modulation in gastric
cancer through regulation of the EGFR and TNF-α signalling
pathways. Mol Cell Biochem. 426:17–26. 2017. View Article : Google Scholar
|
12
|
Zhou W, Chen MK, Yu HT, Zhong ZH, Cai N,
Chen GZ, Zhang P and Chen JJ: The antipsychotic drug pimozide
inhibits cell growth in prostate cancer through suppression of
STAT3 activation. Int J Oncol. 48:322–328. 2016. View Article : Google Scholar
|
13
|
Taub RN and Baker MA: Treatment of
metastatic malignant melanoma with pimozide. Lancet. 1:6051979.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Neifeld JP, Tormey DC, Baker MA, Meyskens
FL Jr and Taub RN: Phase II trial of the dopaminergic inhibitor
pimozide in previously treated melanoma patients. Cancer Treat Rep.
67:155–157. 1983.PubMed/NCBI
|
15
|
Mellor AL and Munn DH: IDO expression by
dendritic cells: Tolerance and tryptophan catabolism. Nat Rev
Immunol. 4:762–774. 2004. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Taylor MW and Feng GS: Relationship
between interferon-gamma, indoleamine 2.3-dioxygenase, and
tryptophan catabolism. FASEB J. 5:2516–2522. 1991. View Article : Google Scholar : PubMed/NCBI
|
17
|
Munn DH, Sharma MD, Lee JR, Jhaver KG,
Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess
R, et al: Potential regulatory function of human dendritic cells
expressing indoleamine 2,3-dioxygenase. Science. 297:1867–1870.
2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Uyttenhove C, Pilotte L, Théate I,
Stroobant V, Colau D, Parmentier N, Boon T and Van den Eynde BJ:
Evidence for a tumoral immune resistance mechanism based on
tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med.
9:1269–1274. 2003. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Löb S, Königsrainer A, Rammensee HG, Opelz
G and Terness P: Inhibitors of indoleamine-2,3-dioxygenase for
cancer therapy: Can we see the wood for the trees. Nat Rev Cancer.
9:445–452. 2009. View Article : Google Scholar
|
20
|
Liu X, Shin N, Koblish HK, Yang G, Wang Q,
Wang K, Leffet L, Hansbury MJ, Thomas B, Rupar M, et al: Selective
inhibition of IDO1 effectively regulates mediators of antitumor
immunity. Blood. 115:3520–3530. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Su C, Zhang P, Liu J and Cao Y: Erianin
inhibits indoleamine 2,3-dioxygenase-induced tumor angiogenesis.
Biomed Pharmacother. 88:521–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang GM, Wang HS, Du J, Ma WF, Wang H,
Qiu Y, Zhang QG, Xu W, Liu HF and Liang JP: Bortezomib relieves
immune tolerance in nasopharyngeal carcinoma via STAT1 suppression
and indoleamine 2,3-dioxygenase downregulation. Cancer Immunol Res.
5:42–51. 2017. View Article : Google Scholar
|
23
|
Hou DY, Muller AJ, Sharma MD, DuHadaway J,
Banerjee T, Johnson M, Mellor AL, Prendergast GC and Munn DH:
Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by
stereoisomers of 1-methyl-tryptophan correlates with antitumor
responses. Cancer Res. 67:792–801. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rogiers A, Wolter P and Bechter O:
Dabrafenib plus trametinib rechallenge in four melanoma patients
who previously progressed on this combination. Melanoma Res.
27:164–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dummer R, Hoeller C, Gruter IP and
Michielin O: Combining talimogene laherparepvec with
immunotherapies in melanoma and other solid tumors. Cancer Immunol
Immunother. 66:683–695. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zimmer L, Apuri S, Eroglu Z, Kottschade
LA, Forschner A, Gutzmer R, Schlaak M, Heinzerling L, Krackhardt
AM, Loquai C, et al: Ipilimumab alone or in combination with
nivolumab after progression on anti-PD-1 therapy in advanced
melanoma. Eur J Cancer. 75:47–55. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hermel DJ and Ott PA: Combining forces:
The promise and peril of synergistic immune checkpoint blockade and
targeted therapy in metastatic melanoma. Cancer Metastasis Rev.
36:43–50. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Deniger DC, Kwong ML, Pasetto A, Dudley
ME, Wunderlich JR, Langhan MM, Lee CR and Rosenberg SA: A pilot
trial of the combination of vemurafenib with adoptive cell therapy
in patients with metastatic melanoma. Clin Cancer Res. 23:351–362.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jia H, Cui J, Jia X, Zhao J, Feng Y, Zhao
P, Zang D, Yu J, Zhao T, Wang H, et al: Therapeutic effects of
STAT3 inhibition by nifuroxazide on murine acute graft
graft-vs.-host disease: Old drug, new use. Mol Med Rep.
16:9480–9486. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bauvois B: New facets of matrix
metalloproteinases MMP-2 and MMP-9 as cell surface transducers:
Outside-in signaling and relationship to tumor progression. Biochim
Biophys Acta. 1825:29–36. 2012.
|
31
|
Lim JY, Lee SE, Park G, Choi EY and Min
CK: Inhibition of indoleamine 2,3-dioxygenase by stereoisomers of
1-methyltryptophan in an experimental graft-versus-tumor model. Exp
Hematol. 42:862–866 e863. 2014. View Article : Google Scholar
|
32
|
Qian F, Liao J, Villella J, et al: Effects
of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and
IDO2-mediated arrest of human T cell proliferation. Cancer Immunol
Immunother. 61:2013–2020. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cho YR and Chiang MP: Epidemiology,
staging (new system), and prognosis of cutaneous melanoma. Clin
Plast Surg. 37:47–53. 2010. View Article : Google Scholar
|
35
|
Damsky WE, Theodosakis N and Bosenberg M:
Melanoma metastasis: New concepts and evolving paradigms. Oncogene.
33:2413–2422. 2014. View Article : Google Scholar
|
36
|
Holmes D: The cancer that rises with the
sun. Nature. 515:S110–S111. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schadendorf D, Fisher DE, Garbe C,
Gershenwald JE, Grob JJ, Halpern A, Herlyn M, Marchetti MA,
McArthur G, Ribas A, et al: Melanoma. Nat Rev Dis Primers.
1:150032015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mirmohammadsadegh A, Hassan M, Bardenheuer
W, Marini A, Gustrau A, Nambiar S, Tannapfel A, Bojar H, Ruzicka T
and Hengge UR: STAT5 phosphorylation in malignant melanoma is
important for survival and is mediated through SRC and JAK1
kinases. J Invest Dermatol. 126:2272–2280. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Malumbres M and Barbacid M: Cell cycle,
CDKs and cancer: A changing paradigm. Nat Rev Cancer. 9:153–166.
2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schwartz GK and Shah MA: Targeting the
cell cycle: A new approach to cancer therapy. J Clin Oncol.
23:9408–9421. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kelman Z and Hurwitz J: Protein-PCNA
interactions: A DNA-scanning mechanism. Trends Biochem Sci.
23:236–238. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hersey P and Zhang XD: How melanoma cells
evade trail-induced apoptosis. Nat Rev Cancer. 1:142–150. 2001.
View Article : Google Scholar
|
43
|
Xia Y, Song X, Li D, Ye T, Xu Y, Lin H,
Meng N, Li G, Deng S, Zhang S, et al: YLT192, a novel, orally
active bioavailable inhibitor of VEGFR2 signaling with potent
antiangiogenic activity and antitumor efficacy in preclinical
models. Sci Rep. 4:60312014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Fidler IJ: The pathogenesis of cancer
metastasis: The 'seed and soil' hypothesis revisited. Nat Rev
Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hodis E, Watson IR, Kryukov GV, Arold ST,
Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C,
et al: A landscape of driver mutations in melanoma. Cell.
150:251–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Roy R, Yang J and Moses MA: Matrix
metalloproteinases as novel biomarkers and potential therapeutic
targets in human cancer. J Clin Oncol. 27:5287–5297. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Bauer D, Werth F, Nguyen HA, Kiecker F and
Eberle J: Critical role of reactive oxygen species (ROS) for
synergistic enhancement of apoptosis by vemurafenib and the
potassium channel inhibitor TRAM-34 in melanoma cells. Cell Death
Dis. 8:e25942017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Booth L, Roberts JL, Sander C, Lee J,
Kirkwood JM, Poklepovic A and Dent P: The HDAC inhibitor AR42
interacts with pazopanib to kill trametinib/dabrafenib-resistant
melanoma cells in vitro and in vivo. Oncotarget. 8:16367–16386.
2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Thakur V, Lu J, Roscilli G, Aurisicchio L,
Cappelletti M, Pavoni E, White WL and Bedogni B: The natural
compound fucoidan from New Zealand Undaria pinnatifida synergizes
with the ERBB inhibitor lapatinib enhancing melanoma growth
inhibition. Oncotarget. 8:17887–17896. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lugini L, Sciamanna I, Federici C, Iessi
E, Spugnini EP and Fais S: Antitumor effect of combination of the
inhibitors of two new oncotargets: Proton pumps and reverse
transcriptase. Oncotarget. 8:4147–4155. 2017. View Article : Google Scholar :
|
51
|
Munn DH and Mellor AL: Indoleamine
2,3-dioxygenase and tumor-induced tolerance. J Clin Invest.
117:1147–1154. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Munn DH, Sharma MD, Hou D, Baban B, Lee
JR, Antonia SJ, Messina JL, Chandler P, Koni PA and Mellor AL:
Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic
cells in tumor-draining lymph nodes. J Clin Invest. 114:280–290.
2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
Frumento G, Rotondo R, Tonetti M and
Ferrara GB: T cell proliferation is blocked by indoleamine
2,3-dioxygenase. Transplant Proc. 33:428–430. 2001. View Article : Google Scholar : PubMed/NCBI
|
54
|
Munn DH and Mellor AL: IDO in the tumor
microenvironment: Inflammation, counter-regulation, and tolerance.
Trends Immunol. 37:193–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Solms M: A previously-untranslated report
by Freud of a lecture on the mechanism of obsessional ideas and
phobias. Int J Psychoanal. 70:91–94. 1989.PubMed/NCBI
|
56
|
Holtzhausen A, Zhao F, Evans KS, Tsutsui
M, Orabona C, Tyler DS and Hanks BA: Melanoma-derived Wnt5a
promotes local dendritic-cell expression of IDO and
immunotolerance: Opportunities for pharmacologic enhancement of
immunotherapy. Cancer Immunol Res. 3:1082–1095. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Chen D, Koropatnick J, Jiang N, Zheng X,
Zhang X, Wang H, Yuan K, Siu KS, Shunnar A, Way C, et al: Targeted
siRNA silencing of indoleamine 2, 3-dioxygenase in
antigen-presenting cells using mannose-conjugated liposomes: A
novel strategy for treatment of melanoma. J Immunother. 37:123–134.
2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Muller AJ, DuHadaway JB, Donover PS,
Sutanto-Ward E and Prendergast GC: Inhibition of indoleamine
2,3-dioxygenase, an immunoregulatory target of the cancer
suppression gene Bin1, potentiates cancer chemotherapy. Nat Med.
11:312–319. 2005. View
Article : Google Scholar : PubMed/NCBI
|
59
|
Mellman I, Coukos G and Dranoff G: Cancer
immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI
|
60
|
Joyce JA and Fearon DT: T cell exclusion,
immune privilege, and the tumor microenvironment. Science.
348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
Fridman WH, Pagès F, Sautès-Fridman C and
Galon J: The immune contexture in human tumours: Impact on clinical
outcome. Nat Rev Cancer. 12:298–306. 2012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Kortylewski M, Swiderski P, Herrmann A,
Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C, et
al: In vivo delivery of siRNA to immune cells by conjugation to a
TLR9 agonist enhances antitumor immune responses. Nat Biotechnol.
27:925–932. 2009. View Article : Google Scholar : PubMed/NCBI
|
64
|
Barker HE, Paget JT, Khan AA and
Harrington KJ: The tumour microenvironment after radiotherapy:
Mechanisms of resistance and recurrence. Nat Rev Cancer.
15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
65
|
Jia H, Li Y, Zhao T, Li X, Hu J, Yin D,
Guo B, Kopecko DJ, Zhao X, Zhang L, et al: Antitumor effects of
Stat3-siRNA and endostatin combined therapies, delivered by
attenuated Salmonella, on orthotopically implanted hepatocarcinoma.
Cancer Immunol Immunother. 61:1977–1987. 2012. View Article : Google Scholar : PubMed/NCBI
|