1
|
Kawasaki Y, Senda T, Ishidate T, Koyama R,
Morishita T, Iwayama Y, Higuchi O and Akiyama T: Asef, a link
between the tumor suppressor APC and G-protein signaling. Science.
289:1194–1197. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thiesen S, Kübart S, Ropers HH and
Nothwang HG: Isolation of two novel human RhoGEFs, ARHGEF3 and
ARHGEF4, in 3p13-21 and 2q22. Biochem Biophys Res Commun.
273:364–369. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kawasaki Y, Sato R and Akiyama T: Mutated
APC and Asef are involved in the migration of colorectal tumour
cells. Nat Cell Biol. 5:211–215. 2003. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Akiyama T and Kawasaki Y: Wnt signalling
and the actin cytoskeleton. Oncogene. 25:7538–7544. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Mitin N, Betts L, Yohe ME, Der CJ, Sondek
J and Rossman KL: Release of autoinhibition of ASEF by APC leads to
CDC42 activation and tumor suppression. Nat Struct Mol Biol.
14:814–823. 2007. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Kawasaki Y, Tsuji S, Sagara M, Echizen K,
Shibata Y and Akiyama T: Adenomatous polyposis coli and Asef
function downstream of hepatocyte growth factor and
phosphatidylinositol 3-kinase. J Biol Chem. 284:22436–22443. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kawasaki Y, Tsuji S, Muroya K, Furukawa S,
Shibata Y, Okuno M, Ohwada S and Akiyama T: The adenomatous
polyposis coli-associated exchange factors Asef and Asef2 are
required for adenoma formation in Apc(Min/+)mice. EMBO Rep.
10:1355–1362. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kawasaki Y, Jigami T, Furukawa S, Sagara
M, Echizen K, Shibata Y, Sato R and Akiyama T: The adenomatous
polyposis coli-associated guanine nucleotide exchange factor Asef
is involved in angiogenesis. J Biol Chem. 285:1199–1207. 2010.
View Article : Google Scholar :
|
9
|
DiMagno EP, Reber HA and Tempero MA;
American Gastroenterological Association: AGA technical review on
the epidemiology, diagnosis, and treatment of pancreatic ductal
adenocarcinoma. Gastroenterology. 117:1464–1484. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Taniuchi K, Furihata M, Hanazaki K, Saito
M and Saibara T: IGF2BP3-mediated translation in cell protrusions
promotes cell invasiveness and metastasis of pancreatic cancer.
Oncotarget. 5:6832–6845. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Taniuchi K, Furihata M and Saibara T:
KIF20A-mediated RNA granule transport system promotes the
invasiveness of pancreatic cancer cells. Neoplasia. 16:1082–1093.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsuboi M, Taniuchi K, Furihata M, Naganuma
S, Kimura M, Watanabe R, Shimizu T, Saito M, Dabanaka K, Hanazaki
K, et al: Vav3 is linked to poor prognosis of pancreatic cancers
and promotes the motility and invasiveness of pancreatic cancer
cells. Pancreatology. 16:905–916. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Japan Pancreatic Society: Classification
of Pancreatic Carcinoma. 2nd English edition: Kanehara & Co.;
Tokyo: 2003
|
14
|
Sobin LH, Gospodarowicz MK and Witteknd C:
TNM classification of malignant tumors. 7th edition.
Wiley-Blackwell; New York, NY: pp. 132–135. 2009
|
15
|
Kondo S: Japanese pancreas society staging
systems for pancreatic cancer In Pancreatic Cancer. Springer; New
York, NY: pp. 1035–1050. 2010
|
16
|
Taniuchi K, Furihata M, Naganuma S,
Dabanaka K, Hanazaki K and Saibara T: BCL7B, a predictor of poor
prognosis of pancreatic cancers, promotes cell motility and
invasion by influencing CREB signaling. Am J Cancer Res. 8:387–404.
2018.
|
17
|
Iwamura T, Katsuki T and Ide K:
Establishment and characterization of a human pancreatic cancer
cell line (SUIT-2) producing carcinoembryonic antigen and
carbohydrate antigen 19-9. Jpn J Cancer Res. 78:54–62.
1987.PubMed/NCBI
|
18
|
Taniuchi K, Nishimori I and Hollingsworth
MA: Intracellular CD24 inhibits cell invasion by
posttranscriptional regulation of BART through interaction with
G3BP. Cancer Res. 71:895–905. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Taniuchi K, Furihata M, Naganuma S,
Dabanaka K, Hanazaki K and Saibara T: PODXL, linked to poor
prognosis of pancreatic cancers, promotes cell invasion via binding
to gelsolin. Cancer Sci. 107:1430–1442. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tanouchi A, Taniuchi K, Furihata M,
Naganuma S, Dabanaka K, Kimura M, Watanabe R, Kohsaki T, Shimizu T,
Saito M, et al: CCDC88A, a prognostic factor for human pancreatic
cancers, promotes the motility and invasiveness of pancreatic
cancer cells. J Exp Clin Cancer Res. 35:1902016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Andea A, Sarkar F and Adsay VN:
Clinicopathological correlates of pancreatic intraepithelial
neoplasia: A comparative analysis of 82 cases with and 152 cases
without pancreatic ductal adenocarcinoma. Mod Pathol. 16:996–1006.
2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Deer EL, González-Hernández J, Coursen JD,
Shea JE, Ngatia J, Scaife CL, Firpo MA and Mulvihill SJ: Phenotype
and genotype of pancreatic cancer cell lines. Pancreas. 39:425–435.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Taniuchi K, Furihata M, Iwasaki S, Tanaka
K, Shimizu T, Saito M and Saibara T: RUVBL1 directly binds actin
filaments and induces formation of cell protrusions to promote
pancreatic cancer cell invasion. Int J Oncol. 44:1945–1954. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Taniuchi K, Yokotani K and Saibara T: BART
inhibits pancreatic cancer cell invasion by Rac1 inactivation
through direct binding to active Rac1. Neoplasia. 14:440–450. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yip-Schneider MT and Schmidt CM: MEK
inhibition of pancreatic carcinoma cells by U0126 and its effect in
combination with sulindac. Pancreas. 27:337–344. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liao X, Zhang L, Thrasher JB, Du J and Li
B: Glycogen synthase kinase-3beta suppression eliminates tumor
necrosis factor-related apoptosis-inducing ligand resistance in
prostate cancer. Mol Cancer Ther. 2:1215–1222. 2003.PubMed/NCBI
|
27
|
Min KJ, Han MA, Kim S, Park JW and Kwon
TK: Osthole enhances TRAIL-mediated apoptosis through
downregulation of c-FLIP expression in renal carcinoma Caki cells.
Oncol Rep. 37:2348–2354. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ahrendt SA and Pitt HA: Surgical
management of pancreatic cancer. Oncology (Williston Park).
16:725–734. 736–738. 7407432002.
|
29
|
Rescher U and Gerke V: Annexins - unique
membrane binding proteins with diverse functions. J Cell Sci.
117:2631–2639. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Itoh RE, Kiyokawa E, Aoki K, Nishioka T,
Akiyama T and Matsuda M: Phosphorylation and activation of the Rac1
and Cdc42 GEF Asef in A431 cells stimulated by EGF. J Cell Sci.
121:2635–2642. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Farkas A, Szatmári E, Orbók A, Wilhelm I,
Wejksza K, Nagyoszi P, Hutamekalin P, Bauer H, Bauer HC, Traweger
A, et al: Hyperosmotic mannitol induces Src kinase-dependent
phosphorylation of beta-catenin in cerebral endothelial cells. J
Neurosci Res. 80:855–861. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bowman T, Broome MA, Sinibaldi D, Wharton
W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA and
Jove R: Stat3-mediated Myc expression is required for Src
transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci
USA. 98:7319–7324. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Levin VA: Basis and importance of Src as a
target in cancer. Cancer Treat Res. 119:89–119. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
He Y, Wang L, Liu W, Zhong J, Bai S, Wang
Z, Thomas DG, Lin J, Reddy RM, Ramnath N, et al: MAP3K3 expression
in tumor cells and tumor-infiltrating lymphocytes is correlated
with favorable patient survival in lung cancer. Sci Rep.
5:114712015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Taniuchi K, Furihata M, Hanazaki K,
Iwasaki S, Tanaka K, Shimizu T, Saito M and Saibara T:
Peroxiredoxin 1 promotes pancreatic cancer cell invasion by
modulating p38 MAPK activity. Pancreas. 44:331–340. 2015.
View Article : Google Scholar :
|
36
|
Wilson W III and Baldwin AS: Maintenance
of constitutive IkappaB kinase activity by glycogen synthase
kinase-3alpha/ beta in pancreatic cancer. Cancer Res. 68:8156–8163.
2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Miyashita K, Nakada M, Shakoori A,
Ishigaki Y, Shimasaki T, Motoo Y, Kawakami K and Minamoto T: An
emerging strategy for cancer treatment targeting aberrant glycogen
synthase kinase 3 beta. Anticancer Agents Med Chem. 9:1114–1122.
2009. View Article : Google Scholar : PubMed/NCBI
|