1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xu C, Li S, Chen T, Hu H, Ding C, Xu Z,
Chen J, Liu Z, Lei Z, Zhang HT, et al: miR-296-5p suppresses cell
viability by directly targeting PLK1 in non-small cell lung cancer.
Oncol Rep. 35:497–503. 2016. View Article : Google Scholar
|
4
|
Lozano R, Naghavi M, Foreman K, Lim S,
Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et
al: Global and regional mortality from 235 causes of death for 20
age groups in 1990 and 2010: A systematic analysis for the Global
Burden of Disease Study 2010. Lancet. 380:2095–2128. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jain RK and Chen H: Spotlight on
brigatinib and its potential in the treatment of patients with
metastatic ALK-positive non-small cell lung cancer who are
resistant or intolerant to crizotinib. Lung Cancer (Auckl).
8:169–177. 2017.
|
6
|
Goffin J, Lacchetti C, Ellis PM, Ung YC
and Evans WK; Lung Cancer Disease Site Group of Cancer Care
Ontario’s Program in Evidence-Based Care: First-line systemic
chemotherapy in the treatment of advanced non-small cell lung
cancer: A systematic review. J Thorac Oncol. 5:260–274. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Gao Y, Gao F, Ma JL, Sun WZ and Song LP:
The potential clinical applications and prospects of microRNAs in
lung cancer. OncoTargets Ther. 7:901–906. 2014. View Article : Google Scholar
|
8
|
Kanwal M, Ding XJ and Cao Y: Familial risk
for lung cancer. Oncol Lett. 13:535–542. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ye Y, Li SL and Wang SY: Construction and
analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal
the key genes associated with prostate cancer. PLoS One.
13:e01980552018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Morales S, De Mayo T, Gulppi FA,
Gonzalez-Hormazabal P, Carrasco V, Reyes JM, Gómez F, Waugh E and
Jara L: Genetic variants in pre-miR-146a, pre-miR-499,
pre-miR-125a, pre-miR-605, and pri-miR-182 are associated with
breast cancer Ssusceptibility in a South American Population. Genes
(Basel). 9:92018. View Article : Google Scholar
|
11
|
Tian W, Du Y, Ma Y, Gu L, Zhou J and Deng
D: MALAT1-miR663a negative feedback loop in colon cancer cell
functions through direct miRNA-lncRNA binding. Cell Death Dis.
9:8572018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dua K, Hansbro NG, Foster PS and Hansbro
PM: MicroRNAs as therapeutics for future drug delivery systems in
treatment of lung diseases. Drug Deliv Transl Res. 7:168–178. 2017.
View Article : Google Scholar
|
13
|
Cho WC: MicroRNAs: Potential biomarkers
for cancer diagnosis, prognosis and targets for therapy. Int J
Biochem Cell Biol. 42:1273–1281. 2010. View Article : Google Scholar
|
14
|
Bartels CL and Tsongalis GJ: MicroRNAs:
Novel biomarkers for human cancer. Clin Chem. 55:623–631. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bowen T, Jenkins RH and Fraser DJ:
MicroRNAs, transforming growth factor beta-1, and tissue fibrosis.
J Pathol. 229:274–285. 2013. View Article : Google Scholar
|
16
|
Fu Q, Song X, Liu Z, Deng X, Luo R, Ge C,
Li R, Li Z, Zhao M, Chen Y, et al: miRomics and proteomics reveal a
miR-296-3p/ PRKCA/FAK/Ras/c-Myc feedback loop modulated by HDGF/
DDX5/β-catenin complex in lung adenocarcinoma. Clin Cancer Res.
23:6336–6350. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vaira V, Faversani A, Dohi T, Montorsi M,
Augello C, Gatti S, Coggi G, Altieri DC and Bosari S: miR-296
regulation of a cell polarity-cell plasticity module controls tumor
progression. Oncogene. 31:27–38. 2012. View Article : Google Scholar :
|
18
|
Savi F, Forno I, Faversani A, Luciani A,
Caldiera S, Gatti S, Foa P, Ricca D, Bulfamante G, Vaira V, et al:
miR-296/Scribble axis is deregulated in human breast cancer and
miR-296 restoration reduces tumour growth in vivo. Clin Sci (Lond).
127:233–242. 2014. View Article : Google Scholar
|
19
|
Barbagallo D, Piro S, Condorelli AG,
Mascali LG, Urbano F, Parrinello N, Monello A, Statello L, Ragusa
M, Rabuazzo AM, et al: miR-296-3p, miR-298-5p and their downstream
networks are causally involved in the higher resistance of
mammalian pancreatic α cells to cytokine-induced apoptosis as
compared to β cells. BMC Genomics. 14:622013. View Article : Google Scholar
|
20
|
Carreras-Badosa G, Bonmatí A, Ortega FJ,
Mercader JM, Guindo-Martínez M, Torrents D, Prats-Puig A,
Martinez-Calcerrada JM, de Zegher F, Ibáñez L, et al: Dysregulation
of placental miRNA in maternal obesity is associated with pre- and
postnatal growth. J Clin Endocrinol Metab. 102:2584–2594. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Togliatto G, Dentelli P, Rosso A, Lombardo
G, Gili M, Gallo S, Gai C, Solini A, Camussi G and Brizzi MF:
PDGF-BB carried by endothelial cell-derived extracellular vesicles
reduces vascular smooth muscle cell apoptosis in diabetes.
Diabetes. 67:704–716. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shivapurkar N, Mikhail S, Navarro R, Bai
W, Marshall J, Hwang J, Pishvaian M, Wellstein A and He AR:
Decrease in blood miR-296 predicts chemotherapy resistance and poor
clinical outcome in patients receiving systemic chemotherapy for
metastatic colon cancer. Int J Colorectal Dis. 28:8872013.
View Article : Google Scholar
|
23
|
Wang L, Bo X, Zheng Q, Xiao X, Wu L and Li
B: miR-296 inhibits proliferation and induces apoptosis by
targeting FGFR1 in human hepatocellular carcinoma. FEBS Lett.
590:4252–4262. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gallo LA, Wright EM and Vallon V: Probing
SGLT2 as a therapeutic target for diabetes: Basic physiology and
consequences. Diab Vasc Dis Res. 12:78–89. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Scafoglio C, Hirayama BA, Kepe V, Liu J,
Ghezzi C, Satyamurthy N, Moatamed NA, Huang J, Koepsell H, Barrio
JR, et al: Functional expression of sodium-glucose transporters in
cancer. Proc Natl Acad Sci USA. 112:E4111–E4119. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ishikawa N, Oguri T, Isobe T, Fujitaka K
and Kohno N: SGLT gene expression in primary lung cancers and their
metastatic lesions. Jpn J Cancer Res. 92:874–879. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yao Y, Shao J, Wu J, Zhang Q, Wang J, Xiao
D and Huang F: The functional variant in the 3′UTR of PTPRT with
the risk of esophageal squamous cell carcinoma in a Chinese
population. Cell Physiol Biochem. 36:306–314. 2015. View Article : Google Scholar
|
28
|
Liang C, Zhang X, Wang HM, Liu XM, Zhang
XJ, Zheng B, Qian GR and Ma ZL: MicroRNA-18a-5p functions as an
oncogene by directly targeting IRF2 in lung cancer. Cell Death Dis.
8:e27642017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
30
|
Shao Y, Sun Q, Liu X, Wang P, Wu R and Ma
Z: tRF-Leu-CAG promotes cell proliferation and cell cycle in
non-small cell lung cancer. Chem Biol Drug Des. 90:730–738. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang B, Ma Z, Li X, Zhang C, Shao Y, Liu
Z, Li Y and Jin Y: Tanshinones suppress non-small cell lung cancer
through up-regulating miR-137. Acta Biochim Biophys Sin (Shanghai).
48:768–770. 2016. View Article : Google Scholar
|
32
|
Li YL, Liu XM, Zhang CY, Zhou JB, Shao Y,
Liang C, Wang HM, Hua ZY, Lu SD and Ma ZL: MicroRNA-34a/EGFR axis
plays pivotal roles in lung tumorigenesis. Oncogenesis. 6:e3722017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang P, Liu X, Shao Y, Wang H, Liang C,
Han B and Ma Z: MicroRNA-107–5p suppresses non-small cell lung
cancer by directly targeting oncogene epidermal growth factor
receptor. Oncotarget. 8:57012–57023. 2017.PubMed/NCBI
|
34
|
Hine J, Paterson H, Abrol E, Russell-Jones
D and Herring R: SGLT inhibition and euglycaemic diabetic
ketoacidosis. Lancet Diabetes Endocrinol. 3:503–504. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Brinker TJ, Alfitian J, Seeger W,
Groneberg DA, von Kalle C, Enk AH, Herth FJF, Kreuter M, Bauer CM,
Gatzka M, et al: A face-aging smoking prevention/cessation
intervention for nursery school students in Germany: An
appearance-focused interventional study. Int J Environ Res Public
Health. 15:152018. View Article : Google Scholar
|
36
|
Ma H, Chen X, Hu H, Li B, Ying X, Zhou C,
Zhong J, Zhao G and Duan S: Hypermethylation of MDFI promoter with
NSCLC is specific for females, non-smokers and people younger than
65. Oncol Lett. 15:9017–9024. 2018.PubMed/NCBI
|
37
|
Cheong HT, Xu F, Choy CT, Hui CWC, Mok TSK
and Wong CH: Upregulation of Bcl2 in NSCLC with acquired resistance
to EGFR-TKI. Oncol Lett. 15:901–907. 2018.PubMed/NCBI
|
38
|
Romero-Cordoba SL, Salido-Guadarrama I,
Rodriguez-Dorantes M and Hidalgo-Miranda A: miRNA biogenesis:
Biological impact in the development of cancer. Cancer Biol Ther.
15:1444–1455. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tutar Y: miRNA and cancer; computational
and experimental approaches. Curr Pharm Biotechnol. 15:4292014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ji W, Sun B and Su C: Targeting microRNAs
in cancer gene therapy. Genes (Basel). 8:82017. View Article : Google Scholar
|
41
|
Ebrahimi A and Sadroddiny E: MicroRNAs in
lung diseases: Recent findings and their pathophysiological
implications. Pulm Pharmacol Ther. 34:55–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shao Y, Shen YQ, Li YL, Liang C, Zhang BJ,
Lu SD, He YY, Wang P, Sun QL, Jin YX, et al: Direct repression of
the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small
cell lung cancer. Oncotarget. 7:34011–34021. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ma Z, Qiu X, Wang D, Li Y, Zhang B, Yuan
T, Wei J, Zhao B, Zhao X, Lou J, et al: miR-181a-5p inhibits cell
proliferation and migration by targeting Kras in non-small cell
lung cancer A549 cells. Acta Biochim Biophys Sin (Shanghai).
47:630–638. 2015. View Article : Google Scholar
|
44
|
Wang DT, Ma ZL, Li YL, Wang YQ, Zhao BT,
Wei JL, Qi X, Zhao XT and Jin YX: miR-150, p53 protein and relevant
miRNAs consist of a regulatory network in NSCLC tumorigenesis.
Oncol Rep. 30:492–498. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lee H, Shin CH, Kim HR, Choi KH and Kim
HH: MicroRNA-296-5p promotes invasiveness through downregulation of
nerve growth factor receptor and caspase-8. Mol Cells. 40:254–261.
2017. View Article : Google Scholar :
|
46
|
Lee KH, Lin FC, Hsu TI, Lin JT, Guo JH,
Tsai CH, Lee YC, Lee YC, Chen CL, Hsiao M, et al: MicroRNA-296-5p
(miR-296-5p) functions as a tumor suppressor in prostate cancer by
directly targeting Pin1. Biochim Biophys Acta. 1843:2055–2066.
2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li T, Lu YY, Zhao XD, Guo HQ, Liu CH, Li
H, Zhou L, Han YN, Wu KC, Nie YZ, et al: MicroRNA-296-5p increases
proliferation in gastric cancer through repression of
Caudal-related homeobox 1. Oncogene. 33:783–793. 2014. View Article : Google Scholar
|
48
|
Maia D, de Carvalho AC, Horst MA, Carvalho
AL, Scapulatempo-Neto C and Vettore AL: Expression of miR-296-5p as
predictive marker for radiotherapy resistance in early-stage
laryngeal carcinoma. J Transl Med. 13:2622015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Watanabe A, Choe S, Chaptal V, Rosenberg
JM, Wright EM, Grabe M and Abramson J: The mechanism of sodium and
substrate release from the binding pocket of vSGLT. Nature.
468:988–991. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cramer SC, Pardridge WM, Hirayama BA and
Wright EM: Colocalization of GLUT2 glucose transporter,
sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in
rat kidney with double-peroxidase immunocytochemistry. Diabetes.
41:766–770. 1992. View Article : Google Scholar : PubMed/NCBI
|
51
|
Vallon V, Rose M, Gerasimova M, Satriano
J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC and Rieg T:
Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia
and glomerular hyperfiltration but not kidney growth or injury in
diabetes mellitus. Am J Physiol Renal Physiol. 304:F156–F167. 2013.
View Article : Google Scholar :
|
52
|
Chao EC and Henry RR: SGLT2 inhibition--a
novel strategy for diabetes treatment. Nat Rev Drug Discov.
9:551–559. 2010. View Article : Google Scholar : PubMed/NCBI
|