1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends - an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar
|
3
|
Van Cutsem E, Sagaert X, Topal B,
Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664.
2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Okholm C, Svendsen LB and Achiam MP:
Status and prognosis of lymph node metastasis in patients with
cardia cancer - a systematic review. Surg Oncol. 23:140–146. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Colquhoun A, Arnold M, Ferlay J, Goodman
KJ, Forman D and Soerjomataram I: Global patterns of cardia and
non-cardia gastric cancer incidence in 2012. Gut. 64:1881–1888.
2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Witte MH, Bernas MJ, Martin CP and Witte
CL: Lymphangiogenesis and lymphangiodysplasia: From molecular to
clinical lymphology. Microsc Res Tech. 55:122–145. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Calle EE, Rodriguez C, Walker-Thurmond K
and Thun MJ: Overweight, obesity, and mortality from cancer in a
prospectively studied cohort of U.S. adults. N Engl J Med.
348:1625–1638. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey
SM, Dong ZW, Mark SD, Qiao YL and Taylor PR: Prospective study of
risk factors for esophageal and gastric cancers in the Linxian
general population trial cohort in China. Int J Cancer.
113:456–463. 2005. View Article : Google Scholar
|
9
|
De Pergola G and Silvestris F: Obesity as
a major risk factor for cancer. J Obes. 2013.291546:2013.
|
10
|
Han J, Jiang Y, Liu X, Meng Q, Xi Q,
Zhuang Q, Han Y, Gao Y, Ding Q and Wu G: Dietary fat intake and
risk of gastric cancer: A meta-analysis of observational studies.
PLoS One. 10:e01385802015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sako A, Kitayama J, Kaisaki S and Nagawa
H: Hyperlipidemia is a risk factor for lymphatic metastasis in
superficial esophageal carcinoma. Cancer Lett. 208:43–49. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jung JI, Cho HJ, Jung YJ, Kwon SH, Her S,
Choi SS, Shin SH, Lee KW and Park JH: High-fat diet-induced obesity
increases lymphangiogenesis and lymph node metastasis in the B16F10
melanoma allograft model: Roles of adipocytes and M2-macrophages.
Int J Cancer. 136:258–270. 2015. View Article : Google Scholar
|
13
|
Levitan I, Volkov S and Subbaiah PV:
Oxidized LDL: Diversity, patterns of recognition, and
pathophysiology. Antioxid Redox Signal. 13:39–75. 2010. View Article : Google Scholar :
|
14
|
Chen KC, Liao YC, Wang JY, Lin YC, Chen CH
and Juo SHH: Oxidized low-density lipoprotein is a common risk
factor for cardiovascular diseases and gastroenterological cancers
via epigenomical regulation of microRNA-210. Oncotarget.
6:24105–24118. 2015.PubMed/NCBI
|
15
|
Delimaris I, Faviou E, Antonakos G,
Stathopoulou E, Zachari A and Dionyssiou-Asteriou A: Oxidized LDL,
serum oxidizability and serum lipid levels in patients with breast
or ovarian cancer. Clin Biochem. 40:1129–1134. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Khaidakov M and Mehta JL: Do
atherosclerosis and obesity-associated susceptibility to cancer
share causative link to oxLDL and LOX-1. Cardiovasc Drugs Ther.
25:477–487. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Koskinen S, Enockson C, Lopes-Virella MF
and Virella G: Preparation of a human standard for determination of
the levels of antibodies to oxidatively modified low-density
lipoproteins. Clin Diagn Lab Immunol. 5:817–822. 1998.PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Δ Δ C(T)). Method Methods. 25:402–408. 2001. View Article : Google Scholar
|
19
|
Kitayama J, Hatano K, Kaisaki S, Suzuki H,
Fujii S and Nagawa H: Hyperlipidaemia is positively correlated with
lymph node metastasis in men with early gastric cancer. Br J Surg.
91:191–198. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Skobe M, Hawighorst T, Jackson DG, Prevo
R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar
M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast
cancer metastasis. Nat Med. 7:192–198. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Swartz MA and Skobe M: Lymphatic function,
lymphangiogenesis, and cancer metastasis. Microsc Res Tech.
55:92–99. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pereira ER, Jones D, Jung K and Padera TP:
The lymph node microenvironment and its role in the progression of
metastatic cancer. Semin Cell Dev Biol. 38:98–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mumprecht V, Honer M, Vigl B, Proulx ST,
Trachsel E, Kaspar M, Banziger-Tobler NE, Schibli R, Neri D and
Detmar M: In vivo imaging of inflammation- and tumor-induced lymph
node lymphangiogenesis by immuno-positron emission tomography.
Cancer Res. 70:8842–8851. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ma C, Luo C, Yin H, Zhang Y, Xiong W,
Zhang T, Gao T, Wang X, Che D, Fang Z, et al: Kallistatin inhibits
lymphangiogenesis and lymphatic metastasis of gastric cancer by
downregulating VEGF-C expression and secretion. Gastric Cancer.
21:617–631. 2018. View Article : Google Scholar
|
25
|
Mäkinen T, Veikkola T, Mustjoki S,
Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H,
Kerjaschki D, et al: Isolated lymphatic endothelial cells transduce
growth, survival and migratory signals via the VEGF-C/D receptor
VEGFR-3. EMBO J. 20:4762–4773. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhu G, Huang Q, Huang Y, Zheng W, Hua J,
Yang S, Zhuang J, Wang J and Ye J: Lipopolysaccharide increases the
release of VEGF-C that enhances cell motility and promotes
lymphangiogenesis and lymphatic metastasis through the TLR4-
NF-κB/JNK pathways in colorectal cancer. Oncotarget. 7:73711–73724.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nishimura S, Akagi M, Yoshida K, Hayakawa
S, Sawamura T, Munakata H and Hamanishi C: Oxidized low-density
lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1
(LOX-1) in cultured bovine articular chondrocytes increases
production of intracellular reactive oxygen species (ROS) resulting
in the activation of NF-kappaB. Osteoarthritis Cartilage.
12:568–576. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li S, Guo Y, Zhu P and Yang T: Role of
Ox-LDL/LOX-1/NF-κB signaling pathway in regulation of
atherosclerotic plaque growth by testosterone in male rabbits.
Vascul Pharmacol. 59:131–137. 2013. View Article : Google Scholar
|
29
|
Ray A and Prefontaine KE: Physical
association and functional antagonism between the p65 subunit of
transcription factor NF-kappa B and the glucocorticoid receptor.
Proc Natl Acad Sci USA. 91:752–756. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Christian F, Smith EL and Carmody RJ: The
regulation of NF-κB subunits by phosphorylation. Cells. 5:52016.
View Article : Google Scholar
|
31
|
Lu J, Mitra S, Wang X, Khaidakov M and
Mehta JL: Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in
atherogenesis and tumorigenesis. Antioxid Redox Signal.
15:2301–2333. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Akhmedov A, Rozenberg I, Paneni F, Camici
GG, Shi Y, Doerries C, Sledzinska A, Mocharla P, Breitenstein A,
Lohmann C, et al: Endothelial overexpression of LOX-1 increases
plaque formation and promotes atherosclerosis in vivo. Eur Heart J.
35:2839–2848. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Falconi M, Ciccone S, D’Arrigo P, Viani F,
Sorge R, Novelli G, Patrizi P, Desideri A and Biocca S: Design of a
novel LOX-1 receptor antagonist mimicking the natural substrate.
Biochem Biophys Res Commun. 438:340–345. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Beasley NJ, Prevo R, Banerji S, Leek RD,
Moore J, van Trappen P, Cox G, Harris AL and Jackson DG:
Intratumoral lymphangiogenesis and lymph node metastasis in head
and neck cancer. Cancer Res. 62:1315–1320. 2002.PubMed/NCBI
|
35
|
Coşkun U, Akyürek N, Dursun A and Yamaç D:
Peritumoral lymphatic microvessel density associated with tumor
progression and poor prognosis in gastric carcinoma. J Surg Res.
164:110–115. 2010. View Article : Google Scholar
|
36
|
Alitalo K and Carmeliet P: Molecular
mechanisms of lymphangiogenesis in health and disease. Cancer Cell.
1:219–227. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Su JL, Yang PC, Shih JY, Yang CY, Wei LH,
Hsieh CY, Chou CH, Jeng YM, Wang MY, Chang KJ, et al: The
VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells.
Cancer Cell. 9:209–223. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zettler ME, Prociuk MA, Austria JA,
Massaeli H, Zhong G and Pierce GN: OxLDL stimulates cell
proliferation through a general induction of cell cycle proteins.
Am J Physiol Heart Circ Physiol. 284:H644–H653. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cheng R and Ma JX: Angiogenesis in
diabetes and obesity. Rev Endocr Metab Disord. 16:67–75. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Gao G, Li Y, Zhang D, Gee S, Crosson C and
Ma J: Unbalanced expression of VEGF and PEDF in ischemia-induced
retinal neovascularization. FEBS Lett. 489:270–276. 2001.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Tsai PW, Shiah SG, Lin MT, Wu CW and Kuo
ML: Up-regulation of vascular endothelial growth factor C in breast
cancer cells by heregulin-beta 1. A critical role of p38/nuclear
factor-kappa B signaling pathway. J Biol Chem. 278:5750–5759. 2003.
View Article : Google Scholar
|
42
|
Stacker SA, Williams SP, Karnezis T,
Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic
vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Li C, Zhang J, Wu H, Li L, Yang C, Song S,
Peng P, Shao M, Zhang M, Zhao J, et al: Lectin-like oxidized
low-density lipo-protein receptor-1 facilitates metastasis of
gastric cancer through driving epithelial-mesenchymal transition
and PI3K/Akt/GSK3 beta activation. Sci Rep. 7:452752017. View Article : Google Scholar
|
44
|
Li S, Mao Y, Zhou T, Luo C, Xie J, Qi W,
Yang Z, Ma J, Gao G and Yang X: Manganese superoxide dismutase
mediates anoikis resistance and tumor metastasis in nasopharyngeal
carcinoma. Oncotarget. 7:32408–32420. 2016.PubMed/NCBI
|
45
|
Pascual G, Avgustinova A, Mejetta S,
Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A,
Hueto JA, et al: Targeting metastasis-initiating cells through the
fatty acid receptor CD36. Nature. 541:41–45. 2017. View Article : Google Scholar
|