CD38 affects the biological behavior and energy metabolism of nasopharyngeal carcinoma cells
- Authors:
- Yanshan Ge
- Yuehua Long
- Songshu Xiao
- Lin Liang
- Zhengxi He
- Chunxue Yue
- Xiong Wei
- Yanhong Zhou
-
Affiliations: Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China, Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China - Published online on: December 3, 2018 https://doi.org/10.3892/ijo.2018.4651
- Pages: 585-599
-
Copyright: © Ge et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Spano JP, Busson P, Atlan D, Bourhis J, Pignon JP, Esteban C and Armand JP: Nasopharyngeal carcinomas: An update. Eur J Cancer. 39:2121–2135. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee AW, Ng WT, Chan LL, Hung WM, Chan CC, Sze HC, Chan OS, Chang AT and Yeung RM: Evolution of treatment for nasopharyngeal cancer - success and setback in the intensity-modulated radiotherapy era. Radiother Oncol. 110:377–384. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu MC and Yuan JM: Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 12:421–429. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fu ZT, Guo XL, Zhang SW, Zeng HM, Sun KX, Chen WQ and He J: Incidence and mortality of nasopharyngeal carcinoma in China, 2014. Zhonghua Zhong Liu Za Zhi. 40:566–571. 2018.In Chinese. PubMed/NCBI | |
Scott RS: Epstein-Barr virus: A master epigenetic manipulator. Curr Opin Virol. 26:74–80. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zeng Z, Zhang W, Xiong W, Li X, Zhang B, Yi W, Xiao L, Wu M, Shen S, et al: Identification of candidate molecular markers of nasopharyngeal carcinoma by microarray analysis of subtracted cDNA libraries constructed by suppression subtractive hybridization. Eur J Cancer Prev. 17:561–571. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi Y, Wakisaka N, Kondo S, Endo K, Sugimoto H, Hatano M, Ueno T, Ishikawa K and Yoshizaki T: Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma. Cancer Metastasis Rev. 36:435–447. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Zhou Y, Xiong W, Luo X, Zhang W, Li X, Fan S, Cao L, Tang K, Wu M, et al: Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray. J Cancer Res Clin Oncol. 133:71–81. 2007. View Article : Google Scholar | |
Zeng Z, Zhou Y, Zhang W, Li X, Xiong W, Liu H, Fan S, Qian J, Wang L, Li Z, et al: Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med. 8:156–160. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xie SH, Yu IT, Tse LA, Mang OW and Yue L: Sex difference in the incidence of nasopharyngeal carcinoma in Hong Kong 1983–2008: Suggestion of a potential protective role of oestrogen. Eur J Cancer. 49:150–155. 2013. View Article : Google Scholar | |
Liu Q, Chen JO, Huang QH and Li YH: Trends in the survival of patients with nasopharyngeal carcinoma between 1976 and 2005 in Sihui, China: A population-based study. Chin J Cancer. 32:325–333. 2013. View Article : Google Scholar : | |
Brouwer CL, Steenbakkers RJ, van den Heuvel E, Duppen JC, Navran A, Bijl HP, Chouvalova O, Burlage FR, Meertens H, Langendijk JA, et al: 3D Variation in delineation of head and neck organs at risk. Radiat Oncol. 7:322012. View Article : Google Scholar : PubMed/NCBI | |
Tang LQ, Lu TY, Li Y, Guo SY, Zhong QY, Zou MS, Chen BL, Tang QN, Chen WH, Guo SS, et al: Patterns of Failure and Survival Trends Of 720 Patients with Stage I Nasopharyngeal Carcinoma Diagnosed from 1990–2012: A Large-scale Retrospective Cohort Study. J Cancer. 9:1308–1317. 2018. View Article : Google Scholar : | |
Huang CI, Chen LF, Chang SL, Wu HC, Ting WC and Yang CC: Accuracy of a staging system for prognosis of 5-year survival of patients with nasopharyngeal carcinoma who underwent chemoradiotherapy. JAMA Otolaryngol Head Neck Surg. 143:1086–1091. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shuang H, Feng J, Caineng C, Qifeng J, Tin J, Yuanyuan C and Xiaozhong C: The value of radical radiotherapy in the primary tumor of newly diagnosed oligo-metastatic nasopharyngeal carcinoma patients. Clin Transl Oncol. Jun 25–2018.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Kwong DL, Sham JS, Au GK, Chua DT, Kwong PW, Cheng AC, Wu PM, Law MW, Kwok CC, Yau CC, et al: Concurrent and adjuvant chemotherapy for nasopharyngeal carcinoma: A factorial study. J Clin Oncol. 22:2643–2653. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yan-Shan GE and Yan-Hong ZHOU: SDHA and tumor cell metabolism. Prog Biochem Biophys. 45:621–628. 2018. | |
Deshpande DA, Guedes AGP, Graeff R, Dogan S, Subramanian S, Walseth TF and Kannan MS: CD38/cADPR signaling pathway in airway disease: Regulatory mechanisms. Mediators Inflamm. 2018.8942042:2018. | |
Itoh M, Ishihara K, Tomizawa H, Tanaka H, Kobune Y, Ishikawa J, Kaisho T and Hirano T: Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem Biophys Res Commun. 203:1309–1317. 1994. View Article : Google Scholar : PubMed/NCBI | |
Terhorst C, van Agthoven A, LeClair K, Snow P, Reinherz E and Schlossman S: Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell. 23:771–780. 1981. View Article : Google Scholar : PubMed/NCBI | |
Nakagawara K, Mori M, Takasawa S, Nata K, Takamura T, Berlova A, Tohgo A, Karasawa T, Yonekura H, Takeuchi T, et al: Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15. Cytogenet Cell Genet. 69:38–39. 1995. View Article : Google Scholar : PubMed/NCBI | |
Zhao YJ, Lam CM and Lee HC: The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal. 5:ra672012. View Article : Google Scholar : PubMed/NCBI | |
Zhao YJ, Zhu WJ, Wang XW, Zhang LH and Lee HC: Determinants of the membrane orientation of a calcium signaling enzyme CD38. Biochim Biophys Acta. 1853.2095–2103. 2015. | |
Lin P, Owens R, Tricot G and Wilson CS: Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 121:482–488. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sherbenou DW, Behrens CR, Su Y, Wolf JL, Martin TG III and Liu B: The development of potential antibody-based therapies for myeloma. Blood Rev. 29:81–91. 2015. View Article : Google Scholar : | |
Bataille R, Jégo G, Robillard N, Barillé-Nion S, Harousseau JL, Moreau P, Amiot M and Pellat-Deceunynck C: The phenotype of normal, reactive and malignant plasma cells. Identification of ‘many and multiple myelomas’ and of new targets for myeloma therapy. Haematologica. 91:1234–1240. 2006.PubMed/NCBI | |
Leo R, Boeker M, Peest D, Hein R, Bartl R, Gessner JE, Selbach J, Wacker G and Deicher H: Multiparameter analyses of normal and malignant human plasma cells: CD38++, CD56+, CD54+, cIg+ is the common phenotype of myeloma cells. Ann Hematol. 64:132–139. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Wang H, Wang Q and Deng H: Overexpression of CD38 decreases cellular NAD levels and alters the expression of proteins involved in energy metabolism and antioxidant defense. J Proteome Res. 13:786–795. 2014. View Article : Google Scholar | |
Liao S, Xiao S, Chen H, Zhang M, Chen Z, Long Y, Gao L, He J, Ge Y, Yi W, et al: The receptor for activated protein kinase C promotes cell growth, invasion and migration in cervical cancer. Int J Oncol. 51:1497–1507. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hara A and Okayasu I: Cyclooxygenase-2 and inducible nitric oxide synthase expression in human astrocytic gliomas: Correlation with angiogenesis and prognostic significance. Acta Neuropathol. 108:43–48. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bose S, Yap LF, Fung M, Starzcynski J, Saleh A, Morgan S, Dawson C, Chukwuma MB, Maina E, Buettner M, et al: The ATM tumour suppressor gene is down-regulated in EBV-associated nasopharyngeal carcinoma. J Pathol. 217:345–352. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Zhang C, Xiao S, Liang L, Liao S, Xiang Y, Cao K, Chen H and Zhou Y: Identification of differentially expressed genes in cervical cancer by bioinformatics analysis. Oncol Lett. 16:2549–2558. 2018.PubMed/NCBI | |
Zhang C, Peng L, Zhang Y, Liu Z, Li W, Chen S and Li G: The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Med Oncol. 34:1012017. View Article : Google Scholar : PubMed/NCBI | |
Arndt C, Koristka S, Feldmann A, Bergmann R and Bachmann M: Coomassie Brilliant blue staining of polyacrylamide gels. Methods Mol Biol. 1853.27–30. 2018. | |
Zheng D, Liao S, Zhu G, Luo G, Xiao S, He J, Pei Z, Li G and Zhou Y: CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol Carcinog. 55:300–311. 2016. View Article : Google Scholar | |
Lefranc F, Le Rhun E, Kiss R and Weller M: Glioblastoma quo vadis: Will migration and invasiveness reemerge as therapeutic targets. Cancer Treat Rev. 68:145–154. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu CA, Chang CY, Hsueh KW, Su HL, Chiou TW, Lin SZ and Harn HJ: Migration/invasion of malignant gliomas and implications for therapeutic treatment. Int J Mol Sci. 19:E11152018. View Article : Google Scholar : PubMed/NCBI | |
Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO and Csoka AB: Cellular senescence as the causal nexus of aging. Front Genet. 7:132016. View Article : Google Scholar : PubMed/NCBI | |
Lee M and Lee JS: Exploiting tumor cell senescence in anticancer therapy. BMB Rep. 47:51–59. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Xiao S, Chen H, Zhang M, Chen Z, Long Y, Gao L, Zhu G, He J, Peng S, et al: CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol Carcinog. 56:2245–2257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abudoureyimu A and Muhemaitibake A: Arsenic trioxide regulates gastric cancer cell apoptosis by mediating cAMP. Eur Rev Med Pharmacol Sci. 21:612–617. 2017.PubMed/NCBI | |
Das D, Khan PP and Maitra S: Endocrine and paracrine regulation of meiotic cell cycle progression in teleost oocytes: cAMP at the centre of complex intra-oocyte signalling events. Gen Comp Endocrinol. 241:33–40. 2017. View Article : Google Scholar | |
Goodman RP, Calvo SE and Mootha VK: Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism. J Biol Chem. 293:7508–7516. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y, Hosaka T, Motoyama K, Ikeda M, Wakiyama M, Terada T, et al: Crystal structures of the human adiponectin receptors. Nature. 520:312–316. 2015. View Article : Google Scholar : PubMed/NCBI | |
Karimi-Busheri F, Zadorozhny V, Li T, Lin H, Shawler DL and Fakhrai H: Pivotal role of CD38 biomarker in combination with CD24, EpCAM, and ALDH for identification of H460 derived lung cancer stem cells. J Stem Cells. 6:9–20. 2011.PubMed/NCBI | |
Karimi-Busheri F, Rasouli-Nia A, Zadorozhny V and Fakhrai H: CD24+/CD38− as new prognostic marker for non-small cell lung cancer. Multidiscip Respir Med. 8:652013. View Article : Google Scholar | |
Chouzouris TM, Dovolou E, Krania F, Pappas IS, Dafopoulos K, Messinis IE, Anifandis G and Amiridis GS: Effects of ghrelin on activation of Akt1 and ERK1/2 pathways during in vitro maturation of bovine oocytes. Zygote. 25:183–189. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng R, Yong H, Xia Y, Xie Q, Gao G and Zhou X: Chemotherapy regimen based on sorafenib combined with 5-FU on HIF-1α and VEGF expression and survival in advanced gastric cancer patients. Oncol Lett. 13:2703–2707. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ganesan R, Hos NJ, Gutierrez S, Fischer J, Stepek JM, Daglidu E, Krönke M and Robinson N: Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 13:e10062272017. View Article : Google Scholar : PubMed/NCBI | |
Keyhani A, Huh YO, Jendiroba D, Pagliaro L, Cortez J, Pierce S, Pearlman M, Estey E, Kantarjian H and Freireich EJ: Increased CD38 expression is associated with favorable prognosis in adult acute leukemia. Leuk Res. 24:153–159. 2000. View Article : Google Scholar : PubMed/NCBI | |
Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 270:30327–30333. 1995. View Article : Google Scholar : PubMed/NCBI | |
Mallone R, Funaro A, Zubiaur M, Baj G, Ausiello CM, Tacchetti C, Sancho J, Grossi C and Malavasi F: Signaling through CD38 induces NK cell activation. Int Immunol. 13:397–409. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Xiao S, Zhu G, Zheng D, He J, Pei Z, Li G and Zhou Y: CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol Rep. 32:2703–2709. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, Fridman M and Stein R: Inhibition of glioma progression by a newly discovered CD38 inhibitor. Int J Cancer. 136:1422–1433. 2015. View Article : Google Scholar | |
Savarino A, Bottarel F, Calosso L, Feito MJ, Bensi T, Bragardo M, Rojo JM, Pugliese A, Abbate I, Capobianchi MR, et al: Effects of the human CD38 glycoprotein on the early stages of the HIV-1 replication cycle. FASEB J. 13:2265–2276. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yamada M, Mizuguchi M, Otsuka N, Ikeda K and Takahashi H: Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 756:52–60. 1997. View Article : Google Scholar : PubMed/NCBI | |
Churchill GC, O'Neill JS, Masgrau R, Patel S, Thomas JM, Genazzani AA and Galione A: Sperm deliver a new second messenger: NAADP. Curr Biol. 13:125–128. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dianzani U, Funaro A, DiFranco D, Garbarino G, Bragardo M, Redoglia V, Buonfiglio D, De Monte LB, Pileri A and Malavasi F: Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J Immunol. 153:952–959. 1994.PubMed/NCBI | |
Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, et al: Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature. 398:70–73. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Cho BH and Kim UH: CD38-mediated Ca2+ signaling contributes to angiotensin II-induced activation of hepatic stellate cells: Attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem. 285:576–582. 2010. View Article : Google Scholar | |
Guedes AG, Rude EP and Kannan MS: Potential role of the CD38/cADPR signaling pathway as an underlying mechanism of the effects of medetomidine on insulin and glucose homeostasis. Vet Anaesth Analg. 40:512–516. 2013. View Article : Google Scholar : PubMed/NCBI | |
Young LS and Rickinson AB: Epstein-Barr virus: 40 years on. Nat Rev Cancer. 4:757–768. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schiattarella GG and Hill JA: Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol. 95:86–93. 2016. View Article : Google Scholar : | |
Yang E, Al-Mugheiry TS, Normando EM and Cordeiro MF: Real-time imaging of retinal cell apoptosis by confocal scanning laser ophthalmoscopy and its role in glaucoma. Front Neurol. 9:3382018. View Article : Google Scholar : PubMed/NCBI | |
Kountouras J, Kouklakis G, Zavos C, Chatzopoulos D, Moschos J, Molyvas E and Zavos N: Apoptosis, inflammatory bowel disease and carcinogenesis: Overview of international and Greek experiences. Can J Gastroenterol. 17:249–258. 2003. View Article : Google Scholar : PubMed/NCBI | |
Blacher E, Dadali T, Bespalko A, Haupenthal VJ, Grimm MO, Hartmann T, Lund FE, Stein R and Levy A: Alzheimer's disease pathology is attenuated in a CD38-deficient mouse model. Ann Neurol. 78:88–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Levy A, Blacher E, Vaknine H, Lund FE, Stein R and Mayo L: CD38 deficiency in the tumor microenvironment attenuates glioma progression and modulates features of tumor-associated microglia/macrophages. Neuro Oncol. 14:1037–1049. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karakasheva TA, Waldron TJ, Eruslanov E, Kim SB, Lee JS, O'Brien S, Hicks PD, Basu D, Singhal S, Malavasi F, et al: CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer. Cancer Res. 75:4074–4085. 2015. View Article : Google Scholar : PubMed/NCBI | |
Poret N, Fu Q, Guihard S, Cheok M, Miller K, Zeng G, Quesnel B, Troussard X, Galiègue-Zouitina S and Shelley CS: CD38 in hairy cell leukemia is a marker of poor prognosis and a new target for therapy. Cancer Res. 75:3902–3911. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deaglio S, Capobianco A, Bergui L, Dürig J, Morabito F, Dührsen U and Malavasi F: CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood. 102:2146–2155. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT and Chini EN: Targeting of NAD metabolism in pancreatic cancer cells: Potential novel therapy for pancreatic tumors. Clin Cancer Res. 20:120–130. 2014. View Article : Google Scholar : | |
Sherr CJ: G1 phase progression: Cycling on cue. Cell. 79:551–555. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bartek J, Bartkova J and Lukas J: The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol. 8:805–814. 1996. View Article : Google Scholar : PubMed/NCBI | |
Donjerkovic D and Scott DW: Regulation of the G1 phase of the mammalian cell cycle. Cell Res. 10:1–16. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Jiang W, Weghorst CM and Weinstein IB: Overexpression of cyclin D1 enhances gene amplification. Cancer Res. 56:36–39. 1996.PubMed/NCBI | |
Izzo JG, Papadimitrakopoulou VA, Li XQ, Ibarguen H, Lee JS, Ro JY, El-Naggar A, Hong WK and Hittelman WN: Dysregulated cyclin D1 expression early in head and neck tumorigenesis: In vivo evidence for an association with subsequent gene amplification. Oncogene. 17:2313–2322. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sapio L, Gallo M, Illiano M, Chiosi E, Naviglio D, Spina A and Naviglio S: The Natural cAMP elevating compound forskolin in cancer therapy: Is It Time. J Cell Physiol. 232:922–927. 2017. View Article : Google Scholar | |
Banerjee J, Papu John AM, Al-Wadei MH and Schuller HM: Prevention of pancreatic cancer in a hamster model by cAMP decrease. Oncotarget. 7:44430–44441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Boyle D, Sanford D, Scherer PE, Pessin JE and Mora S: Intracellular trafficking and secretion of adiponectin is dependent on GGA-coated vesicles. J Biol Chem. 281:7253–7259. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miele M, Costantini S and Colonna G: Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin. PLoS One. 6:e166902011. View Article : Google Scholar : PubMed/NCBI | |
Liu DG, Liu HL, Song TJ, Huang HY, Li X and Tang QQ: Functional expression of the globular domain of human adiponectin in Pichia pastoris. Biochem Biophys Res Commun. 363:769–775. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Tao L, Dawei H, Xuliang L and Xiaodong L: HIF-1α expression correlates with cellular apoptosis, angiogenesis and clinical prognosis in rectal carcinoma. Pathol Oncol Res. 20:603–610. 2014. View Article : Google Scholar : PubMed/NCBI | |
Robb KP, Cotechini T, Allaire C, Sperou A and Graham CH: Inflammation-induced fetal growth restriction in rats is associated with increased placental HIF-1α accumulation. PLoS One. 12:e01758052017. View Article : Google Scholar | |
Guo Y, Han B, Luo K, Ren Z, Cai L and Sun L: NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation. Biomed Pharmacother. 85:733–739. 2017. View Article : Google Scholar | |
Madu C, Li L and Lu Y: Selection, analysis and improvement of anti-angiogenesis compounds identified by an anti-HIF-1α screening and validation system. J Cancer. 7:1926–1938. 2016. View Article : Google Scholar : | |
Kim MH, Jeong YJ, Cho HJ, Hoe HS, Park KK, Park YY, Choi YH, Kim CH, Chang HW, Park YJ, et al: Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol Rep. 37:777–784. 2017. View Article : Google Scholar |