1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar
|
2
|
da Cunha Santos G, Shepherd FA and Tsao
MS: EGFR mutations and lung cancer. Annu Rev Pathol. 6:49–69. 2011.
View Article : Google Scholar
|
3
|
Morris HR, Dell A, Easton RL, Panico M,
Koistinen H, Koistinen R, Oehninger S, Patankar MS, Seppala M and
Clark GF: Gender-specific glycosylation of human glycodelin affects
its contraceptive activity. J Biol Chem. 271:32159–32167. 1996.
View Article : Google Scholar
|
4
|
Dell A, Morris HR, Easton RL, Panico M,
Patankar M, Oehniger S, Koistinen R, Koistinen H, Seppala M and
Clark GF: Structural analysis of the oligosaccharides derived from
glycodelin, a human glycoprotein with potent immunosuppressive and
contraceptive activities. J Biol Chem. 270:24116–24126. 1995.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chiu PC, Chung MK, Koistinen R, Koistinen
H, Seppala M, Ho PC, Ng EH, Lee KF and Yeung WS: Cumulus
oophorus-associated glycodelin-C displaces sperm-bound glycodelin-A
and -F and stimulates spermatozoa-zona pellucida binding. J Biol
Chem. 282:5378–5388. 2007. View Article : Google Scholar
|
6
|
Seppälä M, Koistinen H, Koistinen R, Chiu
PC and Yeung WS: Glycosylation related actions of glycodelin:
Gamete, cumulus cell, immune cell and clinical associations. Hum
Reprod Update. 13:275–287. 2007. View Article : Google Scholar
|
7
|
Okamoto N, Uchida A, Takakura K, Kariya Y,
Kanzaki H, Riittinen L, Koistinen R, Seppälä M and Mori T:
Suppression by human placental protein 14 of natural killer cell
activity. Am J Reprod Immunol. 26:137–142. 1991. View Article : Google Scholar : PubMed/NCBI
|
8
|
Laird SM, Hill CJ, Warren MA, Tuckerman EM
and Li TC: The production of placental protein 14 by human uterine
tubal epithelial cells in culture. Hum Reprod. 10:1346–1351. 1995.
View Article : Google Scholar
|
9
|
Fazleabas AT, Donnelly KM, Srinivasan S,
Fortman JD and Miller JB: Modulation of the baboon (Papio anubis)
uterine endometrium by chorionic gonadotrophin during the period of
uterine receptivity. Proc Natl Acad Sci USA. 96:2543–2548. 1999.
View Article : Google Scholar
|
10
|
Toth B, Roth K, Kunert-Keil C, Scholz C,
Schulze S, Mylonas I, Friese K and Jeschke U: Glycodelin protein
and mRNA is downregulated in human first trimester abortion and
partially upregulated in mole pregnancy. J Histochem Cytochem.
56:477–485. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tseng L, Zhu HH, Mazella J, Koistinen H
and Seppälä M: Relaxin stimulates glycodelin mRNA and protein
concentrations in human endometrial glandular epithelial cells. Mol
Hum Reprod. 5:372–375. 1999. View Article : Google Scholar
|
12
|
Kämäräinen M, Halttunen M, Koistinen R,
von Boguslawsky K, von Smitten K, Andersson LC and Seppälä M:
Expression of glycodelin in human breast and breast cancer. Int J
Cancer. 83:738–742. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hackenberg R, Loos S, Nia AH, Kunzmann R
and Schulz KD: Expression of placental protein 14 by the new
endometrial cancer cell line MFE-280 in vitro and by endometrial
carcinomas in vivo. Anticancer Res. 18(2A): 1153–1158.
1998.PubMed/NCBI
|
14
|
Kämäräinen M, Leivo I, Koistinen R,
Julkunen M, Karvonen U, Rutanen EM and Seppälä M: Normal human
ovary and ovarian tumors express glycodelin, a glycoprotein with
immunosuppressive and contraceptive properties. Am J Pathol.
148:1435–1443. 1996.
|
15
|
Connor JP, Brudney A, Ferrer K and
Fazleabas AT: Glycodelin-A expression in the uterine cervix.
Gynecol Oncol. 79:216–219. 2000. View Article : Google Scholar
|
16
|
Kämäräinen M, Miettinen M, Seppala M, von
Boguslawsky K, Benassi MS, Böhling T and Andersson LC: Epithelial
expression of glycodelin in biphasic synovial sarcomas. Int J
Cancer. 76:487–490. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ren S, Liu S, Howell PM Jr, Zhang G,
Pannell L, Samant R, Shevde-Samant L, Tucker JA, Fodstad O and
Riker AI: Functional characterization of the progestagen-associated
endometrial protein gene in human melanoma. J Cell Mol Med. 14(6B):
1432–1442. 2010. View Article : Google Scholar
|
18
|
Schneider MA, Muley T, Kahn NC, Warth A,
Thomas M, Herth FJ, Dienemann H and Meister M: Glycodelin is a
potential novel follow-up biomarker for malignant pleural
mesothelioma. Oncotarget. 7:71285–71297. 2016. View Article : Google Scholar
|
19
|
Kunert-Keil C, Steinmüller F, Jeschke U,
Gredes T and Gedrange T: Immunolocalization of glycodelin in human
adenocarcinoma of the lung, squamous cell carcinoma of the lung and
lung metastases of colonic adenocarcinoma. Acta Histochem.
113:798–802. 2011. View Article : Google Scholar
|
20
|
Schneider MA, Granzow M, Warth A, Schnabel
PA, Thomas M, Herth FJ, Dienemann H, Muley T and Meister M:
Glycodelin: A New Biomarker with Immunomodulatory Functions in
Non-Small Cell Lung Cancer. Clin Cancer Res. 21:3529–3540. 2015.
View Article : Google Scholar
|
21
|
Lenhard M, Heublein S, Kunert-Keil C,
Vrekoussis T, Lomba I, Ditsch N, Mayr D, Friese K and Jeschke U:
Immunosuppressive Glycodelin A is an independent marker for poor
prognosis in endometrial cancer. BMC Cancer. 13:6162013. View Article : Google Scholar
|
22
|
Scholz C, Heublein S, Lenhard M, Friese K,
Mayr D and Jeschke U: Glycodelin A is a prognostic marker to
predict poor outcome in advanced stage ovarian cancer patients. BMC
Res Notes. 5:5512012. View Article : Google Scholar
|
23
|
Mandelin E, Lassus H, Seppälä M, Leminen
A, Gustafsson JA, Cheng G, Bützow R and Koistinen R: Glycodelin in
ovarian serous carcinoma: Association with differentiation and
survival. Cancer Res. 63:6258–6264. 2003.
|
24
|
Cui J, Liu Y and Wang X: The Roles of
Glycodelin in Cancer Development and Progression. Front Immunol.
8:16852017. View Article : Google Scholar
|
25
|
Morrow DM, Xiong N, Getty RR, Ratajczak
MZ, Morgan D, Seppala M, Riittinen L, Gewirtz AM and Tykocinski ML:
Hematopoietic placental protein 14. An immunosuppressive factor in
cells of the megakaryocytic lineage. Am J Pathol. 145:1485–1495.
1994.
|
26
|
Ramachandran S, Ramaswamy S, Cho Ch and
Parthasarathy S: Lysophosphatidic acid induces glycodelin gene
expression in cancer cells. Cancer Lett. 177:197–202. 2002.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Bazzi MD and Nelsestuen GL: Differences in
the effects of phorbol esters and diacylglycerols on protein kinase
C. Biochemistry. 28:9317–9323. 1989. View Article : Google Scholar
|
28
|
Sando JJ and Chertihin OI: Activation of
protein kinase C by lysophosphatidic acid: Dependence on
composition of phospholipid vesicles. Biochem J. 317:583–588. 1996.
View Article : Google Scholar
|
29
|
Xu JW, Yasui N, Ikeda K, Pan WJ, Watanabe
J, Shiotani M, Yanaihara A, Miki T and Yamori Y: Isoflavones
regulate secretion of leukemia inhibitory factor and transforming
growth factor {beta} and expression of glycodelin in human
endometrial epithelial cells. J Endocrinol. 196:425–433. 2008.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Dydensborg AB, Rose AA, Wilson BJ, Grote
D, Paquet M, Giguère V, Siegel PM and Bouchard M: GATA3 inhibits
breast cancer growth and pulmonary breast cancer metastasis.
Oncogene. 28:2634–2642. 2009. View Article : Google Scholar
|
31
|
Ren S, Howell PM Jr, Han Y, Wang J, Liu M,
Wang Y, Quan G, Du W, Fang L and Riker AI: Overexpression of the
progestagen-associated endometrial protein gene is associated with
microphthalmia-associated transcription factor in human melanoma.
Ochsner J. 11:212–219. 2011.
|
32
|
Gao J, Mazella J, Seppala M and Tseng L:
Ligand activated hPR modulates the glycodelin promoter activity
through the Sp1 sites in human endometrial adenocarcinoma cells.
Mol Cell Endocrinol. 176:97–102. 2001. View Article : Google Scholar
|
33
|
Tabbaa ZM, Zheng Y and Daftary GS: KLF11
epigenetically regulates glycodelin-A, a marker of endometrial
biology via histone-modifying chromatin mechanisms. Reprod Sci.
21:319–328. 2014. View Article : Google Scholar
|
34
|
Beasley MB, Brambilla E and Travis WD: The
2004 World Health Organization classification of lung tumors. Semin
Roentgenol. 40:90–97. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wittekind C: 2010 TNM system: On the 7th
edition of TNM classification of malignant tumors. Pathologe.
31:331–332. 2010.In German. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gottschling S, Jauch A, Kuner R, Herpel E,
Mueller-Decker K, Schnabel PA, Xu EC, Muley T, Sültmann H, Bender
C, et al: Establishment and comparative characterization of novel
squamous cell non-small cell lung cancer cell lines and their
corresponding tumor tissue. Lung Cancer. 75:45–57. 2012. View Article : Google Scholar
|
37
|
Bustin SA, Benes V, Garson JA, Hellemans
J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL,
et al: The MIQE guidelines: Minimum information for publication of
quantitative real-time PCR experiments. Clin Chem. 55:611–622.
2009. View Article : Google Scholar
|
38
|
Zhang YE: Non-Smad pathways in TGF-beta
signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar
|
39
|
Hodge C, Liao J, Stofega M, Guan K,
Carter-Su C and Schwartz J: Growth hormone stimulates
phosphorylation and activation of elk-1 and expression of c-fos,
egr-1, and junB through activation of extracellular
signal-regulated kinases 1-2. J Biol Chem. 273:31327–31336. 1998.
View Article : Google Scholar
|
40
|
Dhawan P and Richmond A: A novel NF-kappa
B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B
activity in melanoma cells. J Biol Chem. 277:7920–7928. 2002.
View Article : Google Scholar
|
41
|
Holland WS, Chinn DC, Lara PN Jr, Gandara
DR and Mack PC: Effects of AKT inhibition on HGF-mediated erlotinib
resistance in non-small cell lung cancer cell lines. J Cancer Res
Clin Oncol. 141:615–626. 2015. View Article : Google Scholar :
|
42
|
Wada M, Horinaka M, Yamazaki T, Katoh N
and Sakai T: The dual RAF/MEK inhibitor CH5126766/RO5126766 may be
a potential therapy for RAS-mutated tumor cells. PLoS One.
9:e1132172014. View Article : Google Scholar
|
43
|
Jorissen RN, Walker F, Pouliot N, Garrett
TP, Ward CW and Burgess AW: Epidermal growth factor receptor:
Mechanisms of activation and signalling. Exp Cell Res. 284:31–53.
2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Riaz A, Huang Y and Johansson S:
G-Protein-Coupled Lysophosphatidic Acid Receptors and Their
Regulation of AKT Signaling. Int J Mol Sci. 17:2152016. View Article : Google Scholar
|
45
|
Wee P and Wang Z: Epidermal Growth Factor
Receptor Cell Proliferation Signaling Pathways. Cancers (Basel).
9:92017.
|
46
|
Sordella R, Bell DW, Haber DA and
Settleman J: Gefitinib-sensitizing EGFR mutations in lung cancer
activate anti-apoptotic pathways. Science. 305:1163–1167. 2004.
View Article : Google Scholar
|
47
|
Tracy S, Mukohara T, Hansen M, Meyerson M,
Johnson BE and Jänne PA: Gefitinib induces apoptosis in the
EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res.
64:7241–7244. 2004. View Article : Google Scholar
|
48
|
Burke JE, Perisic O, Masson GR, Vadas O
and Williams RL: Oncogenic mutations mimic and enhance dynamic
events in the natural activation of phosphoinositide 3-kinase p110α
(PIK3CA). Proc Natl Acad Sci USA. 109:15259–15264. 2012. View Article : Google Scholar
|
49
|
Orloff MS, He X, Peterson C, Chen F, Chen
JL, Mester JL and Eng C: Germline PIK3CA and AKT1 mutations in
Cowden and Cowden-like syndromes. Am J Hum Genet. 92:76–80. 2013.
View Article : Google Scholar :
|
50
|
de Groot RP, Auwerx J, Karperien M, Staels
B and Kruijer W: Activation of junB by PKC and PKA signal
transduction through a novel cis-acting element. Nucleic Acids Res.
19:775–781. 1991. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jain N, Zhang T, Kee WH, Li W and Cao X:
Protein kinase C delta associates with and phosphorylates Stat3 in
an interleukin-6-dependent manner. J Biol Chem. 274:24392–24400.
1999. View Article : Google Scholar
|
52
|
Levy DE and Lee CK: What does Stat3 do. J
Clin Invest. 109:1143–1148. 2002. View Article : Google Scholar
|
53
|
Ghosh S and Baltimore D: Activation in
vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B.
Nature. 344:678–682. 1990. View Article : Google Scholar
|
54
|
Shi Y and Massagué J: Mechanisms of
TGF-beta signaling from cell membrane to the nucleus. Cell.
113:685–700. 2003. View Article : Google Scholar
|
55
|
Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM,
Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, et al: Cancer-derived
lysophosphatidic acid stimulates differentiation of human
mesenchymal stem cells to myofibroblast-like cells. Stem Cells.
26:789–797. 2008. View Article : Google Scholar
|
56
|
Collisson EA, Campbell JD, Brooks AN,
Berger AH, Lee W, Chmielecki J, Beer DG, Cope L, Creighton CJ,
Danilova L, et al: Cancer Genome Atlas Research Network:
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014. View Article : Google Scholar
|
57
|
Brown JS and Banerji U: Maximising the
potential of AKT inhibitors as anti-cancer treatments. Pharmacol
Ther. 172:101–115. 2017. View Article : Google Scholar
|
58
|
Gazdar AF: Epidermal growth factor
receptor inhibition in lung cancer: The evolving role of
individualized therapy. Cancer Metastasis Rev. 29:37–48. 2010.
View Article : Google Scholar
|