1
|
Arjonen A, Kaukonen R and Ivaska J:
Filopodia and adhesion in cancer cell motility. Cell Adhes Migr.
5:421–430. 2011. View Article : Google Scholar
|
2
|
Ridley AJ: Life at the leading edge. Cell.
145:1012–1022. 2011. View Article : Google Scholar
|
3
|
MacGrath SM and Koleske AJ: Cortactin in
cell migration and cancer at a glance. J Cell Sci. 125:1621–1626.
2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
McNiven MA, Kim L, Krueger EW, Orth JD,
Cao H and Wong TW: Regulated interactions between dynamin and the
actin-binding protein cortactin modulate cell shape. J Cell Biol.
151:187–198. 2000. View Article : Google Scholar
|
5
|
Yamada H, Abe T, Satoh A, Okazaki N, Tago
S, Kobayashi K, Yoshida Y, Oda Y, Watanabe M, Tomizawa K, et al:
Stabilization of actin bundles by a dynamin 1/cortactin ring
complex is necessary for growth cone filopodia. J Neurosci.
33:4514–4526. 2013. View Article : Google Scholar
|
6
|
Yamada H, Takeda T, Michiue H, Abe T and
Takei K: Actin bundling by dynamin 2 and cortactin is implicated in
cell migration by stabilizing filopodia in human non-small cell
lung carcinoma cells. Int J Oncol. 49:877–886. 2016. View Article : Google Scholar
|
7
|
Weaver AM, Heuser JE, Karginov AV, Lee WL,
Parsons JT and Cooper JA: Interaction of cortactin and N-WASp with
Arp2/3 complex. Curr Biol. 12:1270–1278. 2002. View Article : Google Scholar
|
8
|
Kinley AW, Weed SA, Weaver AM, Karginov
AV, Bissonette E, Cooper JA and Parsons JT: Cortactin interacts
with WIP in regulating Arp2/3 activation and membrane protrusion.
Curr Biol. 13:384–393. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Contreras-Vallejos E, Utreras E and
Gonzalez-Billault C: Going out of the brain: Non-nervous system
physiological and pathological functions of Cdk5. Cell Signal.
24:44–52. 2012. View Article : Google Scholar
|
10
|
Nikolic M, Dudek H, Kwon YT, Ramos YF and
Tsai LH: The cdk5/p35 kinase is essential for neurite outgrowth
during neuronal differentiation. Genes Dev. 10:816–825. 1996.
View Article : Google Scholar
|
11
|
Liu KC, Leuckx G, Sakano D, Seymour PA,
Mattsson CL, Rautio L, Staels W, Verdonck Y, Serup P, Kume S, et
al: Inhibition of Cdk5 Promotes β-Cell Differentiation From Ductal
Progenitors. Diabetes. 67:58–70. 2018. View Article : Google Scholar
|
12
|
Pozo K and Bibb JA: The emerging role of
Cdk5 in cancer. Trends Cancer. 2:606–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Quintavalle M, Elia L, Price JH,
Heynen-Genel S and Courtneidge SA: A cell-based high-content
screening assay reveals activators and inhibitors of cancer cell
invasion. Sci Signal. 4:ra492011. View Article : Google Scholar
|
14
|
Feldmann G, Mishra A, Hong SM, Bisht S,
Strock CJ, Ball DW, Goggins M, Maitra A and Nelkin BD: Inhibiting
the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation
and progression through the suppression of Ras-Ral signaling.
Cancer Res. 70:4460–4469. 2010. View Article : Google Scholar
|
15
|
Yamada H, Kikuchi T, Masumoto T, Wei FY,
Abe T, Takeda T, Nishiki T, Tomizawa K, Watanabe M, Matsui H, et
al: Possible role of cortactin phosphorylation by protein kinase Cα
in actin-bundle formation at growth cone. Biol Cell. 107:319–330.
2015. View Article : Google Scholar
|
16
|
Tan TC, Valova VA, Malladi CS, Graham ME,
Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, et
al: Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell
Biol. 5:701–710. 2003. View
Article : Google Scholar
|
17
|
Tomizawa K, Sunada S, Lu YF, Oda Y, Kinuta
M, Ohshima T, Saito T, Wei FY, Matsushita M, Li ST, et al:
Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates
clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol.
163:813–824. 2003. View Article : Google Scholar
|
18
|
Schafer DA, Weed SA, Binns D, Karginov AV,
Parsons JT and Cooper JA: Dynamin2 and cortactin regulate actin
assembly and filament organization. Curr Biol. 12:1852–1857. 2002.
View Article : Google Scholar
|
19
|
Nozumi M, Nakagawa H, Miki H, Takenawa T
and Miyamoto S: Differential localization of WAVE isoforms in
filopodia and lamellipodia of the neuronal growth cone. J Cell Sci.
116:239–246. 2003. View Article : Google Scholar
|
20
|
Jeannot P and Besson A: Cortactin function
in invadopodia. Small GTPases. Dec 31–2017.Epub ahead of print.
View Article : Google Scholar
|
21
|
Wong AS, Lee RH, Cheung AY, Yeung PK,
Chung SK, Cheung ZH and Ip NY: Cdk5-mediated phosphorylation of
endophilin B1 is required for induced autophagy in models of
Parkinson’s disease. Nat Cell Biol. 13:568–579. 2011. View Article : Google Scholar
|
22
|
Liang S, Wei FY, Wu YM, Tanabe K, Abe T,
Oda Y, Yoshida Y, Yamada H, Matsui H, Tomizawa K, et al: Major
Cdk5-dependent phosphorylation sites of amphiphysin 1 are
implicated in the regulation of the membrane binding and
endocytosis. J Neurochem. 102:1466–1476. 2007. View Article : Google Scholar
|
23
|
Moutal A, Villa LS, Yeon SK, Householder
KT, Park KD, Sirianni RW and Khanna R: CRMP2 Phosphorylation Drives
Glioblastoma Cell Proliferation. Mol Neurobiol. 55:4403–4416.
2018.
|
24
|
Liu R, Tian B, Gearing M, Hunter S, Ye K
and Mao Z: Cdk5-mediated regulation of the PIKE-A-Akt pathway and
glioblastoma cell invasion. Proc Natl Acad Sci USA. 105:7570–7575.
2008. View Article : Google Scholar
|
25
|
Yushan R, Wenjie C, Suning H, Yiwu D,
Tengfei Z, Madushi WM, Feifei L, Changwen Z, Xin W, Roodrajeetsing
G, et al: Insights into the clinical value of cyclin-dependent
kinase 5 in glioma: A retrospective study. World J Surg Oncol.
13:2232015. View Article : Google Scholar
|
26
|
Martin KH, Jeffery ED, Grigera PR,
Shabanowitz J, Hunt DF and Parsons JT: Cortactin phosphorylation
sites mapped by mass spectrometry. J Cell Sci. 119:2851–2853. 2006.
View Article : Google Scholar
|