1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar
|
2
|
He YT, Li DJ, Liang D, Jin J, Wen DG, Chen
WQ and He J: Estimated of esophageal cancer incidence and mortality
in China, 2013. Zhonghua Zhong Liu Za Zhi. 39:315–320. 2017.In
Chinese. PubMed/NCBI
|
3
|
Enzinger PC and Mayer RJ: Esophageal
cancer. N Engl J Med. 349:2241–2252. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li JY: Epidemiology of esophageal cancer
in China. Natl Cancer Inst Monogr. 62:113–120. 1982.PubMed/NCBI
|
5
|
Liu X, Zhang M, Ying S, Zhang C, Lin R,
Zheng J, Zhang G, Tian D, Guo Y, Du C, et al: Genetic Alterations
in Esophageal Tissues From Squamous Dysplasia to Carcinoma.
Gastroenterology. 153:166–177. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chan GK, Jablonski SA, Starr DA, Goldberg
ML and Yen TJ: Human Zw10 and ROD are mitotic checkpoint proteins
that bind to kinetochores. Nat Cell Biol. 2:944–947. 2000.
View Article : Google Scholar
|
7
|
Keen N and Taylor S: Aurora-kinase
inhibitors as anticancer agents. Nat Rev Cancer. 4:927–936. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen Y, Riley DJ, Chen PL and Lee WH: HEC,
a novel nuclear protein rich in leucine heptad repeats specifically
involved in mitosis. Mol Cell Biol. 17:6049–6056. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kaneko N, Miura K, Gu Z, Karasawa H,
Ohnuma S, Sasaki H, Tsukamoto N, Yokoyama S, Yamamura A, Nagase H,
et al: siRNA-mediated knockdown against CDCA1 and KNTC2, both
frequently overexpressed in colorectal and gastric cancers,
suppresses cell proliferation and induces apoptosis. Biochem
Biophys Res Commun. 390:1235–1240. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Qu Y, Li J, Cai Q and Liu B: Hec1/Ndc80 is
overexpressed in human gastric cancer and regulates cell growth. J
Gastroenterol. 49:408–418. 2014. View Article : Google Scholar
|
11
|
Bièche I, Vacher S, Lallemand F,
Tozlu-Kara S, Bennani H, Beuzelin M, Driouch K, Rouleau E,
Lerebours F, Ripoche H, et al: Expression analysis of mitotic
spindle checkpoint genes in breast carcinoma: Role of NDC80/HEC1 in
early breast tumorigenicity, and a two-gene signature for
aneuploidy. Mol Cancer. 10:232011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hayama S, Daigo Y, Kato T, Ishikawa N,
Yamabuki T, Miyamoto M, Ito T, Tsuchiya E, Kondo S and Nakamura Y:
Activation of CDCA1-KNTC2, members of centromere protein complex,
involved in pulmonary carcinogenesis. Cancer Res. 66:10339–10348.
2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Meng QC, Wang HC, Song ZL, Shan ZZ, Yuan
Z, Zheng Q and Huang XY: Overexpression of NDC80 is correlated with
prognosis of pancreatic cancer and regulates cell proliferation. Am
J Cancer Res. 5:1730–1740. 2015.PubMed/NCBI
|
14
|
Huang LY, Chang CC, Lee YS, Huang JJ,
Chuang SH, Chang JM, Kao KJ, Lau GM, Tsai PY, Liu CW, et al:
Inhibition of Hec1 as a novel approach for treatment of primary
liver cancer. Cancer Chemother Pharmacol. 74:511–520. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Makita Y, Murata S, Katou Y, Kikuchi K,
Uejima H, Teratani M, Hoashi Y, Kenjo E, Matsumoto S, Nogami M, et
al: Anti-tumor activity of KNTC2 siRNA in orthotopic tumor model
mice of hepatocellular carcinoma. Biochem Biophys Res Commun.
493:800–806. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Urata YN, Takeshita F, Tanaka H, Ochiya T
and Takimoto M: Targeted Knockdown of the Kinetochore Protein
D40/Knl-1 Inhibits Human Cancer in a p53 Status-Independent Manner.
Sci Rep. 5:136762015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
18
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou Y, Su Z, Huang Y, Sun T, Chen S, Wu
T, Chen G, Xie X, Li B and Du Z: The Zfx gene is expressed in human
gliomas and is important in the proliferation and apoptosis of the
human malignant glioma cell line U251. J Exp Clin Cancer Res.
30:1142011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Abe W, Nasu K, Nakada C, Kawano Y,
Moriyama M and Narahara H: miR-196b targets c-myc and Bcl-2
expression, inhibits proliferation and induces apoptosis in
endometriotic stromal cells. Hum Reprod. 28:750–761. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liberzon A, Birger C, Thorvaldsdóttir H,
Ghandi M, Mesirov JP and Tamayo P: The Molecular Signatures
Database (MSigDB) hallmark gene set collection. Cell Syst.
1:417–425. 2015. View Article : Google Scholar
|
22
|
Du J, Yuan Z, Ma Z, Song J, Xie X and Chen
Y: KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway
analysis using a path analysis model. Mol Biosyst. 10:2441–2447.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cleveland DW, Mao Y and Sullivan KF:
Centromeres and kinetochores: From epigenetics to mitotic
checkpoint signaling. Cell. 112:407–421. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Orr B, Godek KM and Compton D: Aneuploidy.
Curr Biol. 25:R538–R542. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hartwell LH and Kastan MB: Cell cycle
control and cancer. Science. 266:1821–1828. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Beh TT and Kalitsis P: The Role of
Centromere Defects in Cancer. Prog Mol Subcell Biol. 56:541–554.
2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Thompson SL and Compton DA: Chromosomes
and cancer cells. Chromosome Res. 19:433–444. 2011. View Article : Google Scholar
|
28
|
Thiru P, Kern DM, McKinley KL, Monda JK,
Rago F, Su KC, Tsinman T, Yarar D, Bell GW and Cheeseman IM:
Kinetochore genes are coordinately up-regulated in human tumors as
part of a FoxM1-related cell division program. Mol Biol Cell.
25:1983–1994. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Scaërou F, Starr DA, Piano F, Papoulas O,
Karess RE and Goldberg ML: The ZW10 and Rough Deal checkpoint
proteins function together in a large, evolutionarily conserved
complex targeted to the kinetochore. J Cell Sci. 114:3103–3114.
2001.PubMed/NCBI
|
30
|
Wilson WR and Hay MP: Targeting hypoxia in
cancer therapy. Nat Rev Cancer. 11:393–410. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Y, Fu L, Li JB, Qin Y, Zeng TT, Zhou J,
Zeng ZL, Chen J, Cao TT, Ban X, et al: Increased expression of
EIF5A2, via hypoxia or gene amplification, contributes to
metastasis and angiogenesis of esophageal squamous cell carcinoma.
Gastroenterology. 146:1701–1713.e9. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sulli G, Di Micco R and d'Adda di Fagagna
F: Crosstalk between chromatin state and DNA damage response in
cellular senescence and cancer. Nat Rev Cancer. 12:709–720. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Olcina MM, Foskolou IP, Anbalagan S, Senra
JM, Pires IM, Jiang Y, Ryan AJ and Hammond EM: Replication stress
and chromatin context link ATM activation to a role in DNA
replication. Mol Cell. 52:758–766. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hammond EM, Dorie MJ and Giaccia AJ:
ATR/ATM targets are phosphorylated by ATR in response to hypoxia
and ATM in response to reoxygenation. J Biol Chem. 278:12207–12213.
2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu D, Keijzers G and Rasmussen LJ: DNA
mismatch repair and its many roles in eukaryotic cells. Mutat Res.
773:174–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ling ZQ, Li P, Ge MH, Hu FJ, Fang XH, Dong
ZM and Mao WM: Aberrant methylation of different DNA repair genes
demonstrates distinct prognostic value for esophageal cancer. Dig
Dis Sci. 56:2992–3004. 2011. View Article : Google Scholar : PubMed/NCBI
|