Roles of FGF8 subfamily in embryogenesis and oral‑maxillofacial diseases (Review)
- Authors:
- Yilong Hao
- Shuya Tang
- Yao Yuan
- Rui Liu
- Qianming Chen
-
Affiliations: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: January 7, 2019 https://doi.org/10.3892/ijo.2019.4677
- Pages: 797-806
This article is mentioned in:
Abstract
Belov AA and Mohammadi M: Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol. 5:52013. View Article : Google Scholar | |
Böttcher RT and Niehrs C: Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 26:63–77. 2005. View Article : Google Scholar : PubMed/NCBI | |
Estienne A and Price CA: The fibroblast growth factor 8 family in the female reproductive tract. Reproduction. 155:R53–R62. 2018. View Article : Google Scholar | |
Liu R, Huang S, Lei Y, Zhang T, Wang K, Liu B, Nice EC, Xiang R, Xie K, Li J, et al: FGF8 promotes colorectal cancer growth and metastasis by activating YAP1. Oncotarget. 6:935–952. 2015. | |
Mattila MM and Härkönen PL: Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev. 18:257–266. 2007. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: Comparative genomics on FGF8, FGF17, and FGF18 orthologs. Int J Mol Med. 16:493–496. 2005.PubMed/NCBI | |
Gemel J, Gorry M, Ehrlich GD and MacArthur CA: Structure and sequence of human FGF8. Genomics. 35:253–257. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hoshikawa M, Ohbayashi N, Yonamine A, Konishi M, Ozaki K, Fukui S and Itoh N: Structure and expression of a novel fibroblast growth factor, FGF-17, preferentially expressed in the embryonic brain. Biochem Biophys Res Commun. 244:187–191. 1998. View Article : Google Scholar : PubMed/NCBI | |
Eswarakumar VP, Lax I and Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149. 2005. View Article : Google Scholar : PubMed/NCBI | |
Popovici C, Roubin R, Coulier F and Birnbaum D: An evolutionary history of the FGF superfamily. BioEssays. 27:849–857. 2005. View Article : Google Scholar : PubMed/NCBI | |
Itoh N and Ornitz DM: Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 237:18–27. 2008. View Article : Google Scholar | |
Beenken A and Mohammadi M: The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov. 8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M and Ornitz DM: Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 281:15694–15700. 2006. View Article : Google Scholar : PubMed/NCBI | |
Olsen SK, Li JY, Bromleigh C, Eliseenkova AV, Ibrahimi OA, Lao Z, Zhang F, Linhardt RJ, Joyner AL and Mohammadi M: Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. 20:185–198. 2006. View Article : Google Scholar : | |
Cretekos CJ, Deng JM, Green ED and Rasweiler JJ: Isolation, genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat, Carollia perspicillata. Int J Dev Biol. 51:333–338. 2007. View Article : Google Scholar : PubMed/NCBI | |
Crossley PH and Martin GR: The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development. 121:439–451. 1995.PubMed/NCBI | |
Xu J, Lawshe A, MacArthur CA and Ornitz DM: Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech Dev. 83:165–178. 1999. View Article : Google Scholar : PubMed/NCBI | |
Haque T, Nakada S and Hamdy RC: A review of FGF18: Its expression, signaling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol. 22:97–105. 2007. | |
Goetz R and Mohammadi M: Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol. 14:166–180. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I and Schlessinger J: A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 89:693–702. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sternberg PW and Alberola-Ila J: Conspiracy theory: RAS and RAF do not act alone. Cell. 95:447–450. 1998. View Article : Google Scholar : PubMed/NCBI | |
Thisse B and Thisse C: Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287:390–402. 2005. View Article : Google Scholar : PubMed/NCBI | |
Turner N and Grose R: Fibroblast growth factor signalling: From development to cancer. Nat Rev Cancer. 10:116–129. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haugsten EM, Wiedlocha A, Olsnes S and Wesche J: Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res. 8:1439–1452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin YR, Turcotte TJ, Crocker AL, Han XH and Yoon JK: The canonical Wnt signaling activator, R-spondin2, regulates cranio-facial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev Biol. 352:1–13. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV and Jiang R: A Shh-Foxf-Fgf18-Shh molecular circuit regulating palate development. PLoS Genet. 12:e10057692016. View Article : Google Scholar : PubMed/NCBI | |
Laestander C and Engström W: Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif. 47:3–11. 2014. View Article : Google Scholar | |
Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM and Melnick M: FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol. 268:457–469. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cormier S, Leroy C, Delezoide AL and Silve C: Expression of fibroblast growth factors 18 and 23 during human embryonic and fetal development. Gene Expr Patterns. 5:569–573. 2005. View Article : Google Scholar : PubMed/NCBI | |
Itoh N and Ornitz DM: Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J Biochem. 149:121–130. 2011. View Article : Google Scholar : | |
Nie X, Luukko K and Kettunen P: FGF signalling in craniofacial development and developmental disorders. Oral Dis. 12:102–111. 2006. View Article : Google Scholar : PubMed/NCBI | |
Trumpp A, Depew MJ, Rubenstein JL, Bishop JM and Martin GR: Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13:3136–3148. 1999. View Article : Google Scholar : PubMed/NCBI | |
Haworth KE, Wilson JM, Grevellec A, Cobourne MT, Healy C, Helms JA, Sharpe PT and Tucker AS: Sonic hedgehog in the pharyngeal endoderm controls arch pattern via regulation of Fgf8 in head ectoderm. Dev Biol. 303:244–258. 2007. View Article : Google Scholar | |
Schmotzer CL and Shehata BM: Two cases of agnathia (otocephaly): With review of the role of fibroblast growth factor (FGF8) and bone morphogenetic protein (BMP4) in patterning of the first branchial arch. Pediatr Dev Pathol. 11:321–324. 2008. View Article : Google Scholar : PubMed/NCBI | |
Du W, Prochazka J, Prochazkova M and Klein OD: Expression of FGFs during early mouse tongue development. Gene Expr Patterns. 20:81–87. 2016. View Article : Google Scholar : PubMed/NCBI | |
Swarup N, Nayak MT, Chowdhary Z, Mehendiratta M, Khatana S, Choi SJ and Sagolsem C: Evaluation and immunolocalization of BMP4 and FGF8 in odontogenic cyst and tumors. Anal Cell Pathol. 2018:12045492018. View Article : Google Scholar | |
Li CY, Prochazka J, Goodwin AF and Klein OD: Fibroblast growth factor signaling in mammalian tooth development. Odontology. 102:1–13. 2014. View Article : Google Scholar | |
Jernvall J and Thesleff I: Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 92:19–29. 2000. View Article : Google Scholar : PubMed/NCBI | |
Baba O, Ota MS, Terashima T, Tabata MJ and Takano Y: Expression of transcripts for fibroblast growth factor 18 and its possible receptors during postnatal dentin formation in rat molars. Odontology. 103:136–142. 2015. View Article : Google Scholar | |
St Amand TR, Zhang Y, Semina EV, Zhao X, Hu Y, Nguyen L, Murray JC and Chen Y: Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol. 217:323–332. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust JP and Goridis C: Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol. 189:275–284. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tucker AS, Matthews KL and Sharpe PT: Transformation of tooth type induced by inhibition of BMP signaling. Science. 282:1136–1138. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lu MF, Pressman C, Dyer R, Johnson RL and Martin JF: Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 401:276–278. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lin CR, Kioussi C, O'Connell S, Briata P, Szeto D, Liu F, Izpisúa-Belmonte JC and Rosenfeld MG: Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 401:279–282. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J and Ishkitiev N: Proteome response of dental pulp cells to exogenous FGF8. J Proteomics. 183:14–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shao M, Liu C, Song Y, Ye W, He W, Yuan G, Gu S, Lin C, Ma L, Zhang Y, et al: FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. J Mol Cell Biol. 7:441–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Huang Y, He F, Gu S, Zhang G, Chen Y and Zhang Y: Expression survey of genes critical for tooth development in the human embryonic tooth germ. Dev Dyn. 236:1307–1312. 2007. View Article : Google Scholar : PubMed/NCBI | |
Porntaveetus T, Otsuka-Tanaka Y, Basson MA, Moon AM, Sharpe PT and Ohazama A: Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat. 218:534–543. 2011. View Article : Google Scholar : PubMed/NCBI | |
Agarwal A, Gundappa M, Miglani S and Nagar R: Asyndromic hypodontia associated with tooth morphology alteration: A rare case report. J Conserv Dent. 16:269–271. 2013. View Article : Google Scholar : PubMed/NCBI | |
Neubüser A, Peters H, Balling R and Martin GR: Antagonistic interactions between FGF and BMP signaling pathways: A mechanism for positioning the sites of tooth formation. Cell. 90:247–255. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tucker AS, Yamada G, Grigoriou M, Pachnis V and Sharpe PT: Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development. 126:51–61. 1999. | |
Bae JM, Clarke JC, Rashid H, Adhami MD, McCullough K, Scott JS, Chen H, Sinha KM, de Crombrugghe B and Javed A: Specificity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts. J Bone Miner Res. 33:1126–1140. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jung HS, Oropeza V and Thesleff I: Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae. Mech Dev. 81:179–182. 1999. View Article : Google Scholar : PubMed/NCBI | |
Paulson RB, Hayes TG and Sucheston ME: Scanning electron microscope study of tongue development in the CD-1 mouse fetus. J Craniofac Genet Dev Biol. 5:59–73. 1985.PubMed/NCBI | |
Nagata J and Yamane A: Progress of cell proliferation in striated muscle tissues during development of the mouse tongue. J Dent Res. 83:926–929. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nie X: Apoptosis, proliferation and gene expression patterns in mouse developing tongue. Anat Embryol (Berl). 210:125–132. 2005. View Article : Google Scholar | |
Liu Z, Xu J, Colvin JS and Ornitz DM: Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 16:859–869. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N and Takada S: FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 16:870–879. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond F, et al: Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage. 10:308–320. 2002. View Article : Google Scholar : PubMed/NCBI | |
MacArthur CA, Lawshé A, Xu J, Santos-Ocampo S, Heikinheimo M, Chellaiah AT and Ornitz DM: FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development. 121:3603–3613. 1995.PubMed/NCBI | |
Jaskoll T and Melnick M: Embryonic salivary gland branching morphogenesis. Branching Morphogenesis. Springer; Boston, MA: pp. 160–175. 2011 | |
Kang Y and Massagué J: Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tanaka A, Furuya A, Yamasaki M, Hanai N, Kuriki K, Kamiakito T, Kobayashi Y, Yoshida H, Koike M and Fukayama M: High frequency of fibroblast growth factor (FGF) 8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal antibody against FGF 8. Cancer Res. 58:2053–2056. 1998.PubMed/NCBI | |
Ishibe T, Nakayama T, Okamoto T, Aoyama T, Nishijo K, Shibata KR, Shima Y, Nagayama S, Katagiri T, Nakamura Y, et al: Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: Potential application of signal inhibitors to molecular target therapy. Clin Cancer Res. 11:2702–2712. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weng M and Chen Z, Xiao Q, Li R and Chen Z: A review of FGF signaling in palate development. Biomed Pharmacother. 103:240–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goudy S, Law A, Sanchez G, Baldwin HS and Brown C: Tbx1 is necessary for palatal elongation and elevation. Mech Dev. 127:292–300. 2010. View Article : Google Scholar : PubMed/NCBI | |
Riley BM, Mansilla MA, Ma J, Daack-Hirsch S, Maher BS, Raffensperger LM, Russo ET, Vieira AR, Dodé C, Mohammadi M, et al: Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci USA. 104:4512–4517. 2007. View Article : Google Scholar : PubMed/NCBI | |
Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S, Edelmann W, Hebert JM and Morrow BE: Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development. 133:977–987. 2006. View Article : Google Scholar : PubMed/NCBI | |
Juriloff DM and Harris MJ: Mouse genetic models of cleft lip with or without cleft palate. Birth Defects Res A Clin Mol Teratol. 82:63–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kasberg AD, Brunskill EW and Potter SS: SP8 regulates signaling centers during craniofacial development. Dev Biol. 381:312–323. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rice R, Connor E and Rice DP: Expression patterns of Hedgehog signalling pathway members during mouse palate development. Gene Expr Patterns. 6:206–212. 2006. View Article : Google Scholar | |
Taneyhill LA, Hoover-Fong J, Lozanoff S, Marcucio R, Richtsmeier JT and Trainor PA: The society for craniofacial genetics and developmental biology 38th annual meeting. Am J Med Genet A. 170:1732–1753. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tabler JM, Barrell WB, Szabo-Rogers HL, Healy C, Yeung Y, Perdiguero EG, Schulz C, Yannakoudakis BZ, Mesbahi A, Wlodarczyk B, et al: Fuz mutant mice reveal shared mechanisms between ciliopathies and FGF-related syndromes. Dev Cell. 25:623–635. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, et al: The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol. 11:1225–1232. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dollé P and Franco B: Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet. 38:112–117. 2006. View Article : Google Scholar | |
Stottmann RW, Anderson RM and Klingensmith J: The BMP antagonists Chordin and Noggin have essential but redundant roles in mouse mandibular outgrowth. Dev Biol. 240:457–473. 2001. View Article : Google Scholar | |
Liu W, Selever J, Murali D, Sun X, Brugger SM, Ma L, Schwartz RJ, Maxson R, Furuta Y and Martin JF: Threshold-specific requirements for Bmp4 in mandibular development. Dev Biol. 283:282–293. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mackenzie BA, Wolff R, Lowe N, Billington CJ Jr, Peterson A, Schmidt B, Graf D, Mina M, Gopalakrishnan R and Petryk A: Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice. Dev Biol. 328:13–23. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kumamoto H: Molecular pathology of odontogenic tumors. Oral Pathol Med. 35:65–74. 2006. View Article : Google Scholar | |
El-Naggar AK, Chan J, Takata T, Grandis JR and Slootweg PJ: The fourth edition of the head and neck World Health Organization blue book: Editors' perspectives. Hum Pathol. 66:10–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kallioniemi A: Bone morphogenetic protein 4-a fascinating regulator of cancer cell behavior. Cancer Genet. 205:267–277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hallor K, Sciot RJ, Staaf J, Heidenblad M, Rydholm A, Bauer HC, Aström K, Domanski HA, Meis JM, Kindblom LG, et al: Two genetic pathways, t (1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J Pathol. 217:716–727. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Wang Z, Chen F, Yuan Y, Wang J, Liu R and Chen Q: Roles of FGFR in oral carcinogenesis. Cell Prolif. 49:261–269. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Xie X, Jiang Y, Wei Z, Wang P, Chen F, Li X, Sun C, Zhao H, Zeng X, et al: LRP6 is identified as a potential prognostic marker for oral squamous cell carcinoma via MALDI-IMS. Cell Death Dis. 8:e3035. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bryja V, Andersson ER, Schambony A, Esner M, Bryjová L, Biris KK, Hall AC, Kraft B, Cajanek L, Yamaguchi TP, et al: The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell. 20:924–936. 2009. View Article : Google Scholar : | |
Canning CA, Lee L, Irving C, Mason I and Jones CM: Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev Biol. 305:276–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Patel SA, Barnes A, Loftus N, Martin R, Sloan P, Thakker N and Goodacre R: Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in human oral squamous cell carcinoma. Analyst. 134:301–307. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lemieux E, Cagnol S, Beaudry K, Carrier J and Rivard N: Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 34:4914–4927. 2015. View Article : Google Scholar | |
Bryja V, Andersson ER, Schambony A, et al: The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell. 20:924–936. 2009. View Article : Google Scholar : | |
Guo Y, Ren MS, Shang C, Zhu L and Zhong M: MTSS1 gene regulated by miR-96 inhibits cell proliferation and metastasis in tongue squamous cellular carcinoma Tca8113 cell line. Int J Clin Exp Med. 8:15441–15449. 2015.PubMed/NCBI | |
Ceasar SA, Rajan V, Prykhozhij SV, Berman JN and Ignacimuthu S: Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta. 1863:2333–2344. 2016. View Article : Google Scholar : PubMed/NCBI | |
Square T, Romášek M, Jandzik D, Cattell MV, Klymkowsky M and Medeiros DM: CRISPR/Cas9-mediated mutagenesis in the sea lamprey, Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. Development. 142:4180–4187. 2015. View Article : Google Scholar : PubMed/NCBI | |
Webber BL, Raghu S and Edwards OR: Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat. Proc Natl Acad Sci USA. 112:10565–10567. 2015. View Article : Google Scholar |