1
|
Tkach M and Théry C: Communication by
extracellular vesicles: Where we are and where we need to go. Cell.
164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Camussi G, Deregibus MC, Bruno S, Grange
C, Fonsato V and Tetta C: Exosome/microvesicle-mediated epigenetic
reprogramming of cells. Am J Cancer Res. 1:98–110. 2011.PubMed/NCBI
|
3
|
Raposo G and Stoorvogel W: Extracellular
vesicles: Exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Théry C, Zitvogel L and Amigorena S:
Exosomes: Composition, biogenesis and function. Nat Rev Immunol.
2:569–579. 2002. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Ratajczak J, Wysoczynski M, Hayek F,
Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived
microvesicles: Important and underappreciated mediators of
cell-to-cell communication. Leukemia. 20:1487–1495. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
EL Andaloussi S, Mäger I and Breakefield
XO: Extracellular vesicles: Biology and emerging therapeutic
opportunities. Nat Rev Drug Discov. 12:347–357. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Colombo M, Raposo G and Théry C:
Biogenesis, secretion, and intercellular interactions of exosomes
and other extracellular vesicles. Annu Rev Cell Dev Biol.
30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mulcahy LA, Pink RC and Carter DR: Routes
and mechanisms of extracellular vesicle uptake. J Extracell
Vesicles. 3:32014. View Article : Google Scholar
|
9
|
O'Donoghue EJ and Krachler AM: Mechanisms
of outer membrane vesicle entry into host cells. Cell Microbiol.
18:1508–1517. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Christianson HC, Svensson KJ, van
Kuppevelt TH, Li JP and Belting M: Cancer cell exosomes depend on
cell-surface heparan sulfate proteoglycans for their
internalization and functional activity. Proc Natl Acad Sci USA.
110:17380–17385. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ehrlich M, Boll W, Van Oijen A, Hariharan
R, Chandran K, Nibert ML and Kirchhausen T: Endocytosis by random
initiation and stabilization of clathrin-coated pits. Cell.
118:591–605. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Stephens L, Ellson C and Hawkins P: Roles
of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr Opin Cell
Biol. 14:203–213. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang LH, Rothberg KG and Anderson RG:
Mis-assembly of clathrin lattices on endosomes reveals a regulatory
switch for coated pit formation. J Cell Biol. 123:1107–1117. 1993.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Swanson JA: Shaping cups into phagosomes
and macropi-nosomes. Nat Rev Mol Cell Biol. 9:639–649. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Koivusalo M, Welch C, Hayashi H, Scott CC,
Kim M, Alexander T, Touret N, Hahn KM and Grinstein S: Amiloride
inhibits macropinocytosis by lowering submembranous pH and
preventing Rac1 and Cdc42 signaling. J Cell Biol. 188:547–563.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Parolini I, Federici C, Raggi C, Lugini L,
Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A,
et al: Microenvironmental pH is a key factor for exosome traffic in
tumor cells. J Biol Chem. 284:34211–34222. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ha D, Yang N and Nadithe V: Exosomes as
therapeutic drug carriers and delivery vehicles across biological
membranes: Current perspectives and future challenges. Acta Pharm
Sin B. 6:287–296. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Batrakova EV and Kim MS: Using exosomes,
naturally-equipped nanocarriers, for drug delivery. J Control
Release. 219:396–405. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lemaire M, Deleu S, De Bruyne E, Van
Valckenborgh E, Menu E and Vanderkerken K: The microenvironment and
molecular biology of the multiple myeloma tumor. Adv Cancer Res.
110:19–42. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Manier S, Sacco A, Leleu X, Ghobrial IM
and Roccaro AM: Bone marrow microenvironment in multiple myeloma
progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang J, Faict S, Maes K, De Bruyne E, Van
Valckenborgh E, Schots R, Vanderkerken K and Menu E: Extracellular
vesicle cross-talk in the bone marrow microenvironment:
Implications in multiple myeloma. Oncotarget. 7:38927–38945.
2016.PubMed/NCBI
|
22
|
Wang J, De Veirman K, Faict S, Frassanito
MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes
establish a favourable bone marrow microenvironment with enhanced
angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang J, De Veirman K, De Beule N, Maes K,
De Bruyne E, Van Valckenborgh E, Vanderkerken K and Menu E: The
bone marrow microenvironment enhances multiple myeloma progression
by exosome-mediated activation of myeloid-derived suppressor cells.
Oncotarget. 6:43992–44004. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang J, Hendrix A, Hernot S, Lemaire M, De
Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken
K and Menu E: Bone marrow stromal cell-derived exosomes as
communicators in drug resistance in multiple myeloma cells. Blood.
124:555–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
De Veirman K, Wang J, Xu S, Leleu X, Himpe
E, Maes K, De Bruyne E, Van Valckenborgh E, Vanderkerken K, Menu E,
et al: Induction of miR-146a by multiple myeloma cells in
mesenchymal stromal cells stimulates their pro-tumoral activity.
Cancer Lett. 377:17–24. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zuhorn IS, Kalicharan R and Hoekstra D:
Lipoplex-mediated transfection of mammalian cells occurs through
the cholesterol-dependent clathrin-mediated pathway of endocytosis.
J Biol Chem. 277:18021–18028. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Uhrig S, Coutelle O, Wiehe T, Perabo L,
Hallek M and Büning H: Successful target cell transduction of
capsid-engineered rAAV vectors requires clathrin-dependent
endocytosis. Gene Ther. 19:210–218. 2012. View Article : Google Scholar
|
28
|
Kim KS, Yoon YR, Lee HJ, Yoon S, Kim SY,
Shin SW, An JJ, Kim MS, Choi SY, Sun W, et al: Enhanced
hypothalamic leptin signaling in mice lacking dopamine D2
receptors. J Biol Chem. 285:8905–8917. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gawecka JE, Young-Robbins SS, Sulzmaier
FJ, Caliva MJ, Heikkilä MM, Matter ML and Ramos JW: RSK2 protein
suppresses integrin activation and fibronectin matrix assembly and
promotes cell migration. J Biol Chem. 287:43424–43437. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
MacGibeny MA, Koyuncu OO, Wirblich C,
Schnell MJ and Enquist LW: Retrograde axonal transport of rabies
virus is unaffected by interferon treatment but blocked by emetine
locally in axons. PLoS Pathog. 14:e10071882018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ,
Chang LF, Zhou Q and Sui SF: Cellular internalization of exosomes
occurs through phagocytosis. Traffic. 11:675–687. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Umezu T, Tadokoro H, Azuma K, Yoshizawa S,
Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic
multiple myeloma cells enhances angiogenesis by targeting
factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Théry C, Ostrowski M and Segura E:
Membrane vesicles as conveyors of immune responses. Nat Rev
Immunol. 9:581–593. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Raimondo F, Morosi L, Chinello C, Magni F
and Pitto M: Advances in membranous vesicle and exosome proteomics
improving biological understanding and biomarker discovery.
Proteomics. 11:709–720. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Orozco AF and Lewis DE: Flow cytometric
analysis of circulating microparticles in plasma. Cytometry A.
77:502–514. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Meissl K, Macho-Maschler S, Müller M and
Strobl B: The good and the bad faces of STAT1 in solid tumours.
Cytokine. 89:12–20. 2017. View Article : Google Scholar
|
37
|
Wingelhofer B, Neubauer HA, Valent P, Han
X, Constantinescu SN, Gunning PT, Müller M and Moriggl R:
Implications of STAT3 and STAT5 signaling on gene regulation and
chromatin remodeling in hematopoietic cancer. Leukemia.
32:1713–1726. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tanimura S and Takeda K: ERK signalling as
a regulator of cell motility. J Biochem. 162:145–154. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Costa Verdera H, Gitz-Francois JJ,
Schiffelers RM and Vader P: Cellular uptake of extracellular
vesicles is mediated by clathrin-independent endocytosis and
macropinocytosis. J Controll Release. 266:100–108. 2017. View Article : Google Scholar
|
40
|
Doherty GJ and McMahon HT: Mechanisms of
endocytosis. Annu Rev Biochem. 78:857–902. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rosales C and Uribe-Querol E:
Phagocytosis: A fundamental process in immunity. BioMed Res Int.
2017:90428512017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kaksonen M and Roux A: Mechanisms of
clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 19:313–326.
2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rosendale M and Perrais D: Imaging in
focus: Imaging the dynamics of endocytosis. Int J Biochem Cell
Biol. 93:41–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Franzen CA, Simms PE, Van Huis AF, Foreman
KE, Kuo PC and Gupta GN: Characterization of uptake and
internalization of exosomes by bladder cancer cells. BioMed Res
Int. 2014:6198292014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mayor S and Pagano RE: Pathways of
clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 8:603–612.
2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Taylor MJ, Lampe M and Merrifield CJ: A
feedback loop between dynamin and actin recruitment during
clathrin-mediated endocytosis. PLoS Biol. 10:e10013022012.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Marks B, Stowell MH, Vallis Y, Mills IG,
Gibson A, Hopkins CR and McMahon HT: GTPase activity of dynamin and
resulting conformation change are essential for endocytosis.
Nature. 410:231–235. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Parton RG and Simons K: The multiple faces
of caveolae. Nat Rev Mol Cell Biol. 8:185–194. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Fitzner D, Schnaars M, van Rossum D,
Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK and Simons
M: Selective transfer of exosomes from oligodendrocytes to
microglia by macropinocytosis. J Cell Sci. 124:447–458. 2011.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Escrevente C, Keller S, Altevogt P and
Costa J: Interaction and uptake of exosomes by ovarian cancer
cells. BMC Cancer. 11:1082011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kerr MC and Teasdale RD: Defining
macropinocytosis. Traffic. 10:364–371. 2009. View Article : Google Scholar : PubMed/NCBI
|