Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review)
- Authors:
- Susana Romero-Garcia
- Heriberto Prado-Garcia
-
Affiliations: Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases ‘Ismael Cosío Villegas’, CP 14080 Mexico City, Mexico - Published online on: January 28, 2019 https://doi.org/10.3892/ijo.2019.4696
- Pages: 1155-1167
This article is mentioned in:
Abstract
Yang S and Huang XY: Ca2+ influx through L-type Ca2+ channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. J Biol Chem. 280:27130–27137. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tsai FC, Seki A, Yang HW, Hayer A, Carrasco S, Malmersjö S and Meyer T: A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol. 16:133–144. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Camello PJ, Verkhratsky A and Toescu EC: Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging. 25:349–359. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Wang X, Shen Q, Yang X, Yu C, Cai C, Cai G, Meng X and Zou F: Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun. 458:186–193. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Sun Q, Zhou D, Song W, Yang Q, Ju B, Zhang L, Xie H, Zhou L, Hu Z, et al: HINT2 triggers mitochondrial Ca2+ influx by regulating the mitochondrial Ca2+ uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett. 411:106–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck- Weiermair M, Hallström S, Graier WF and Malli R: IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci. 127:2944–2955. 2014. View Article : Google Scholar : PubMed/NCBI | |
Imbert N, Cognard C, Duport G, Guillou C and Raymond G: Abnormal calcium homeostasis in Duchenne muscular dystrophy myotubes contracting in vitro. Cell Calcium. 18:177–186. 1995. View Article : Google Scholar : PubMed/NCBI | |
Budd SL and Nicholls DG: A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem. 66:403–411. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hartmann J and Verkhratsky A: Relations between intracellular Ca2+ stores and store-operated Ca2+ entry in primary cultured human glioblastoma cells. J Physiol. 513:411–424. 1998. View Article : Google Scholar | |
Hoth M, Button DC and Lewis RS: Mitochondrial control of calcium-channel gating: A mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA. 97:10607–10612. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jouaville LS, Pinton P, Bastianutto C, Rutter GA and Rizzuto R: Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc Natl Acad Sci USA. 96:13807–13812. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 280:1763–1766. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP and Miller CC: The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 27:371–385. 2017. View Article : Google Scholar : PubMed/NCBI | |
Báthori G, Csordás G, Garcia-Perez C, Davies E and Hajnóczky G: Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion- selective channel (VDAC). J Biol Chem. 281:17347–17358. 2006. View Article : Google Scholar | |
Tekmen M and Gleason E: Multiple Ca2+-dependent mechanisms regulate L-type Ca2+ current in retinal amacrine cells. J Neurophysiol. 104:1849–1866. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hiester BG, Bourke AM, Sinnen BL, Cook SG, Gibson ES, Smith KR and Kennedy MJ: L-type voltage-gated Ca2+ channels regulate synaptic-activity-triggered recycling endosome fusion in neuronal dendrites. Cell Rep. 21:2134–2146. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, et al: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 476:341–345. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsai CW, Wu Y, Pao PC, Phillips CB, Williams C, Miller C, Ranaghan M and Tsai MF: Proteolytic control of the mitochondrial calcium uniporter complex. Proc Natl Acad Sci USA. 114:4388–4393. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Yang J, Chen S, Xiang H, Liu H, Lin D, Zhao S, Peng H, Chen P, Chen AF, et al: Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction. Diab Vasc Dis Res. 14:494–501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luongo TS, Lambert JP, Gross P, Nwokedi M, Lombardi AA, Shanmughapriya S, Carpenter AC, Kolmetzky D, Gao E, van Berlo JH, et al: The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature. 545:93–97. 2017. View Article : Google Scholar | |
Roy S, Dey K, Hershfinkel M, Ohana E and Sekler I: Identification of residues that control Li+ versus Na+ dependent Ca2+ exchange at the transport site of the mitochondrial NCLX. Biochim Biophys Acta Mol Cell Res. 1864:997–1008. 2017. View Article : Google Scholar : PubMed/NCBI | |
Austin S, Tavakoli M, Pfeiffer C, Seifert J, Mattarei A, De Stefani D, Zoratti M and Nowikovsky K: LETM1-mediated K+ and Na+ homeostasis regulates mitochondrial Ca2+ efflux. Front Physiol. 8:8392017. View Article : Google Scholar | |
Melchionda M, Pittman JK, Mayor R and Patel S: Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol. 212:803–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shao J, Fu Z, Ji Y, Guan X, Guo S, Ding Z, Yang X, Cong Y and Shen Y: Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ antiporter. Sci Rep. 6:341742016. View Article : Google Scholar | |
Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM and Chan DC: Structural basis of mitochondrial tethering by mitofusin complexes. Science. 305:858–862. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ausman J, Abbade J, Ermini L, Farrell A, Tagliaferro A, Post M and Caniggia I: Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis. 9:2982018. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez T, Parra V, Troncoso R, Pennanen C, Contreras- Ferrat A, Vasquez-Trincado C, Morales PE, Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, et al: Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardio-myocytes. Cell Commun Signal. 12:682014. | |
Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, et al: p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA. 112:1779–1784. 2015. View Article : Google Scholar | |
Park SJ, Lee SB, Suh Y, Kim SJ, Lee N, Hong JH, Park C, Woo Y, Ishizuka K, Kim JH, et al: DISC1 modulates neuronal stress responses by gate-keeping ER-mitochondria Ca2+ transfer through the MAM. Cell Rep. 21:2748–2759. 2017. View Article : Google Scholar : PubMed/NCBI | |
Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgó J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al: Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy. 7:1472–1489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hur YS, Kim KD, Paek SH and Yoo SH: Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One. 5:e119732010. View Article : Google Scholar | |
Furuichi T, Simon-Chazottes D, Fujino I, Yamada N, Hasegawa M, Miyawaki A, Yoshikawa S, Guénet JL and Mikoshiba K: Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3r1) in the mouse central nervous system. Receptors Channels. 1:11–24. 1993.PubMed/NCBI | |
Sugiyama T, Yamamoto-Hino M, Miyawaki A, Furuichi T, Mikoshiba K and Hasegawa M: Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: Dynamic aspects of their cell-type specific expression. FEBS Lett. 349:191–196. 1994. View Article : Google Scholar : PubMed/NCBI | |
Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, et al: Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell. 142:270–283. 2010. View Article : Google Scholar | |
Kennedy ED, Rizzuto R, Theler JM, Pralong WF, Bastianutto C, Pozzan T and Wollheim CB: Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J Clin Invest. 98:2524–2538. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R and Rutter GA: Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem. 274:13281–13291. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavaré JM and Denton RM: Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: Significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA. 93:5489–5494. 1996. View Article : Google Scholar | |
Territo PR, Mootha VK, French SA and Balaban RS: Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 278:C423–C435. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gizak A, Pirog M and Rakus D: Muscle FBPase binds to cardiomyocyte mitochondria under glycogen synthase kinase-3 inhibition or elevation of cellular Ca2+ level. FEBS Lett. 586:13–19. 2012. View Article : Google Scholar | |
Wiśniewski J, Piróg M, Hołubowicz R, Dobryszycki P, McCubrey JA, Rakus D and Gizak A: Dimeric and tetrameric forms of muscle fructose-1,6-bisphosphatase play different roles in the cell. Oncotarget. 8:115420–115433. 2017. View Article : Google Scholar | |
Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H and Matsushita M: CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol. 182:573–585. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ji WK, Hatch AL, Merrill RA, Strack S and Higgs HN: Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife. 4:e115532015. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Pi H, Chen Y, Zhang N, Guo P, Lu Y, He M, Xie J, Zhong M, Zhang Y, et al: Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis. 4:e5402013. View Article : Google Scholar : PubMed/NCBI | |
Pennanen C, Parra V, López-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejías P, Kuzmicic J, Chiong M, Zorzano A, et al: Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 127:2659–2671. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ohshima Y, Takata N, Suzuki-Karasaki M, Yoshida Y, Tokuhashi Y and Suzuki-Karasaki Y: Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities. Int J Oncol. 51:1146–1158. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Schwarz TL: The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell. 136:163–174. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kremneva E, Kislin M, Kang X and Khiroug L: Motility of astrocytic mitochondria is arrested by Ca2+-dependent interaction between mitochondria and actin filaments. Cell Calcium. 53:85–93. 2013. View Article : Google Scholar | |
Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, et al: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 33:627–638. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D and Chu CT: Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 284:13843–13855. 2009. View Article : Google Scholar | |
Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, Arena G, Vignone D, Fimia GM and Valente EM: PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 13:654–669. 2017. View Article : Google Scholar : PubMed/NCBI | |
Evans JH and Falke JJ: Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc Natl Acad Sci USA. 104:16176–16181. 2007. View Article : Google Scholar | |
Gottlieb TM, Leal JF, Seger R, Taya Y and Oren M: Cross-talk between Akt, p53 and Mdm2: Possible implications for the regulation of apoptosis. Oncogene. 21:1299–1303. 2002. View Article : Google Scholar : PubMed/NCBI | |
Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C and Pinton P: Endoplasmic reticulum- mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochim Biophys Acta Mol Cell Res. 1864:858–864. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu Y, Guo X, Ji L, Huang Q, Zhang H, et al: MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene. 36:5897–5909. 2017. View Article : Google Scholar : PubMed/NCBI | |
Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N and Hall MN: Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA. 110:12526–12534. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rimessi A, Marchi S, Patergnani S and Pinton P: H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene. 33:2329–2340. 2014. View Article : Google Scholar | |
Matsumoto T, Uchiumi T, Monji K, Yagi M, Setoyama D, Amamoto R, Matsushima Y, Shiota M, Eto M and Kang D: Doxycycline induces apoptosis via ER stress selectively to cells with a cancer stem cell-like properties: Importance of stem cell plasticity. Oncogenesis. 6:3972017. View Article : Google Scholar : PubMed/NCBI | |
Seervi M, Sobhan PK, Joseph J, Ann Mathew K and Santhoshkumar TR: ERO1α-dependent endoplasmic reticulum-mitochondrial calcium flux contributes to ER stress and mitochondrial permeabilization by procaspase-activating compound-1 (PAC-1). Cell Death Dis. 4:e9682013. View Article : Google Scholar | |
Wu LF, Guo YT, Zhang QH, Xiang MQ, Deng W, Ye YQ, Pu ZJ, Feng JL and Huang GY: Enhanced antitumor effects of adenoviral-mediated siRNA against GRP78 gene on adenosine- induced apoptosis in human hepatoma HepG2 cells. Int J Mol Sci. 15:525–544. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shibao K, Fiedler MJ, Nagata J, Minagawa N, Hirata K, Nakayama Y, Iwakiri Y, Nathanson MH and Yamaguchi K: The type III inositol 1,4,5-trisphosphate receptor is associated with aggressiveness of colorectal carcinoma. Cell Calcium. 48:315–323. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sakakura C, Hagiwara A, Fukuda K, Shimomura K, Takagi T, Kin S, Nakase Y, Fujiyama J, Mikoshiba K, Okazaki Y, et al: Possible involvement of inositol 1,4,5-trisphosphate receptor type 3 (IP3R3) in the peritoneal dissemination of gastric cancers. Anticancer Res. 23:3691–3697. 2003.PubMed/NCBI | |
Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, Parys JB, Agostinis P, Leybaert L, Shoshan- Barmatz V, et al: The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem. 290:9150–9161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu ZH, Liu CH, Hang JB, Gao BL and Hu JA: Rituximab effectively reverses tyrosine kinase inhibitors (TKIs) resistance through inhibiting the accumulation of rictor on mitochondria- associated ER-membrane (MAM). Cancer Biomark. 20:581–588. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C and Archer SL: Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26:2175–2186. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW and Tu Y: Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 32:4814–4824. 2013. View Article : Google Scholar | |
Ferreira-da-Silva A, Valacca C, Rios E, Pópulo H, Soares P, Sobrinho-Simões M, Scorrano L, Máximo V and Campello S: Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One. 10:e01223082015. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Zhou L, Yin W, Bai J and Liu R: miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission. Int J Oncol. 53:124–136. 2018.PubMed/NCBI | |
Huang Q, Cao H, Zhan L, Sun X, Wang G, Li J, Guo X, Ren T, Wang Z, Lyu Y, et al: Mitochondrial fission forms a positive feedback loop with cytosolic calcium signaling pathway to promote autophagy in hepatocellular carcinoma cells. Cancer Lett. 403:108–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang P, Zhang L, Wei J, Xie H, Zhou L, et al: Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett. 358:47–58. 2015. View Article : Google Scholar | |
Zhou X, Zhang L, Zheng B, Yan Y, Zhang Y, Xie H, Zhou L, Zheng S and Wang W: MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci. 107:424–432. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM and Nathanson MH: Nucleoplasmic calcium is required for cell proliferation. J Biol Chem. 282:17061–17068. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, Xiang R and Tan X: Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun. 411:786–791. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cho KB, Cho MK, Lee WY and Kang KW: Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 293:230–239. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Zhang JJ and Huang XY: Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 15:124–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG: Orai1 is an essential pore subunit of the CRAC channel. Nature. 443:230–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stewart TA, Azimi I, Thompson EW, Roberts-Thomson SJ and Monteith GR: A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun. 458:509–514. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ and Monteith GR: Non-stimulated, agonist- stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One. 7:e369232012. View Article : Google Scholar | |
Tajeddine N and Gailly P: TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem. 287:16146–16157. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hou T, Jian C, Xu J, Huang AY, Xi J, Hu K, Wei L, Cheng H and Wang X: Identification of EFHD1 as a novel Ca(2+) sensor for mitoflash activation. Cell Calcium. 59:262–270. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li W, Sun T, Liu B, Wu D, Qi W, Wang X, Ma Q and Cheng H: Regulation of mitoflash biogenesis and signaling by mitochondrial dynamics. Sci Rep. 6:329332016. View Article : Google Scholar : PubMed/NCBI | |
Rosselin M, Santo-Domingo J, Bermont F, Giacomello M and Demaurex N: L-OPA1 regulates mitoflash biogenesis independently from membrane fusion. EMBO Rep. 18:451–463. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ying Z, Chen K, Zheng L, Wu Y, Li L, Wang R, Long Q, Yang L, Guo J, Yao D, et al: Transient activation of mitoflashes modulates nanog at the early phase of somatic cell reprogramming. Cell Metab. 23:220–226. 2016. View Article : Google Scholar | |
Burch TC, Rhim JS and Nyalwidhe JO: Mitochondria biogenesis and bioenergetics gene profiles in isogenic prostate cells with different malignant phenotypes. BioMed Res Int. 2016:17852012016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Zhang H, Zheng Z, et al: Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol. 37:14205–14215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsai FC and Meyer T: Ca2+ pulses control local cycles of lamel-lipodia retraction and adhesion along the front of migrating cells. Curr Biol. 22:837–842. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Lucas B, Bernal A, Pérez LM, San Martín N and Gálvez BG: Membrane blebbing is required for mesenchymal precursor migration. PLoS One. 11:e01500042016. View Article : Google Scholar : PubMed/NCBI | |
Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M and Madeja Z: Lamellipodia and membrane blebs drive efficient electrotactic migration of rat walker carcinosarcoma cells WC 256. PLoS One. 11:e01491332016. View Article : Google Scholar : PubMed/NCBI | |
Gambade A, Zreika S, Guéguinou M, Chourpa I, Fromont G, Bouchet AM, Burlaud-Gaillard J, Potier-Cartereau M, Roger S, Aucagne V, et al: Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells. Oncotarget. 7:23785–23800. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Wang Y, Peng J, Shen Q, Chen M, Tang W, Li X, Cai C, Wang B, Cai S, et al: Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect. Oncotarget. 8:83831–83844. 2017.PubMed/NCBI | |
Park JH, Kim HK, Jung H, Kim KH, Kang MS, Hong JH, Yu BC, Park S, Seo SK, Choi IW, et al: NecroX-5 prevents breast cancer metastasis by AKT inhibition via reducing intracellular calcium levels. Int J Oncol. 50:185–192. 2017. View Article : Google Scholar | |
Monet M, Lehen'kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, et al: Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 70:1225–1235. 2010. View Article : Google Scholar : PubMed/NCBI | |
Panahi G, Pasalar P, Zare M, Rizzuto R and Meshkani R: MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-κB pathways and ROS production in HepG2 cells. PLoS One. 13:e01965802018. View Article : Google Scholar | |
Corazao-Rozas P, Guerreschi P, André F, Gabert PE, Lancel S, Dekiouk S, Fontaine D, Tardivel M, Savina A, Quesnel B, et al: Mitochondrial oxidative phosphorylation controls cancer cell's life and death decisions upon exposure to MAPK inhibitors. Oncotarget. 7:39473–39485. 2016. View Article : Google Scholar : PubMed/NCBI | |
Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, Martini F, Cavallesco G, Tognon M and Pinton P: The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 6:23427–23444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Wang J, Zhang H, Yuan P, Zhu J, Wu Y, Huang Q, Guo X, Zhang J, Ji L, et al: MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell Survival of Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53 Degradation. Antioxid Redox Signal. 28:1120–1136. 2018. View Article : Google Scholar | |
Lehen'kyi V, Flourakis M, Skryma R and Prevarskaya N: TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene. 26:7380–7385. 2007. View Article : Google Scholar : PubMed/NCBI | |
Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
Luyten T, Welkenhuyzen K, Roest G, Kania E, Wang L, Bittremieux M, Yule DI, Parys JB and Bultynck G: Resveratrol- induced autophagy is dependent on IP3Rs and on cytosolic Ca2. Biochim Biophys Acta Mol Cell Res. 1864:947–956. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, et al: Selective vulnerability of cancer cells by inhibition of Ca(2+) transfer from endoplasmic reticulum to mitochondria. Cell Rep. 14:2313–2324. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martin KR, Celano SL, Solitro AR, Gunaydin H, Scott M, O'Hagan RC, Shumway SD, Fuller P and MacKeigan JP: A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience. 8:74–84. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raturi A, Gutiérrez T, Ortiz-Sandoval C, Ruangkittisakul A, Herrera-Cruz MS, Rockley JP, Gesson K, Ourdev D, Lou PH, Lucchinetti E, et al: TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J Cell Biol. 214:433–444. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ and Swisher SG: Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem. 277:9219–9225. 2002. View Article : Google Scholar | |
Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ: BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science. 300:135–139. 2003. View Article : Google Scholar : PubMed/NCBI | |
Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU and Kaufmann T: Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 20:785–799. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, et al: PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science. 330:1247–1251. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP and Pinton P: Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20:1631–1643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, et al: PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19:1880–1891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li C, Liu Q, Li N, Chen W, Wang L, Wang Y, Yu Y and Cao X: EAPF/Phafin-2, a novel endoplasmic reticulum-associated protein, facilitates TNF-alpha-triggered cellular apoptosis through endoplasmic reticulum-mitochondrial apoptotic pathway. J Mol Med (Berl). 86:471–484. 2008. View Article : Google Scholar | |
Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar | |
Namba T, Tian F, Chu K, Hwang SY, Yoon KW, Byun S, Hiraki M, Mandinova A and Lee SW: CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. Cell Rep. 5:331–339. 2013. View Article : Google Scholar : PubMed/NCBI |