1
|
Ruiz R, Herrero C, Strasser-Weippl K,
Touya D, St. Louis J, Bukowski A and Goss PE: Epidemiology and
pathophysiology of pregnancy-associated breast cancer: A review.
Breast. 35:136–141. 2017.
|
2
|
Jhan JR and Andrechek ER: Effective
personalized therapy for breast cancer based on predictions of cell
signaling pathway activation from gene expression analysis.
Oncogene. 36:3553–3561. 2017.
|
3
|
Korkaya H, Liu S and Wicha MS: Breast
cancer stem cells, cytokine networks, and the tumor
microenvironment. J Clin Invest. 121:3804–3809. 2011.
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017.
|
5
|
Samavat H and Kurzer MS: Estrogen
metabolism and breast cancer. Cancer Lett. 356:231–243. 2015.
|
6
|
Zhu A, Li Y, Song W, Xu Y, Yang F, Zhang
W, Yin Y and Guan X: Antiproliferative effect of androgen receptor
inhibition in mesenchymal stem-like triple-negative breast Cancer.
Cell Physiol Biochem. 38:1003–1014. 2016.
|
7
|
Mao Y, Keller ET, Garfield DH, Shen K and
Wang J: Stromal cells in tumor microenvironment and breast cancer.
Cancer Metastasis Rev. 32:303–315. 2013.
|
8
|
Li T, Zhang J, Zhang J, Zhang N, Zeng Y,
Tang S, Tao Z, Qu X, Jia J, Zhu W, et al: Nicotine-enhanced
stemness and epithelial-mesenchymal transition of human umbilical
cord mesenchymal stem cells promote tumor formation and growth in
nude mice. Oncotarget. 9:591–606. 2017.
|
9
|
Shang F, Liu S, Ming L, Tian R, Jin F,
Ding Y, Zhang Y, Zhang H, Deng Z and Jin Y: Human umbilical cord
MSCs as new cell sources for promoting periodontal regeneration in
inflammatory periodontal defect. Theranostics. 7:4370–4382.
2017.
|
10
|
Song Y, Zhao HY, Lyu ZS, Cao XN, Shi MM,
Wen Q, Tang FF, Wang Y, Xu LP, Zhang XH, et al: Dysfunctional bone
marrow mesenchymal stem cells in patients with poor graft function
after allogeneic hematopoietic stem cell transplantation. Biol
Blood Marrow Transplant. 24:1981–1989. 2018.
|
11
|
Wang M, Song L, Strange C, Dong X and Wang
H: Therapeutic effects of adipose stem cells from diabetic mice for
the treatment of type 2 diabetes. Mol Ther. 26:1921–1930. 2018.
|
12
|
Uccelli A, Moretta L and Pistoia V:
Mesenchymal stem cells in health and disease. Nat Rev Immunol.
8:726–736. 2008.
|
13
|
Mirzaei H, Sahebkar A, Avan A, Jaafari MR,
Salehi R, Salehi H, Baharvand H, Rezaei A, Hadjati J, Pawelek JM,
et al: Application of mesenchymal dtem cells in melanoma: A
potential therapeutic strategy for delivery of targeted agents.
Curr Med Chem. 23:455–463. 2016.
|
14
|
Wang Y, Chen X, Cao W and Shi Y:
Plasticity of mesenchymal stem cells in immunomodulation:
Pathological and therapeutic implications. Nat Immunol.
15:1009–1016. 2014.
|
15
|
Houthuijzen JM, Daenen LG, Roodhart JM and
Voest EE: The role of mesenchymal stem cells in anti-cancer drug
resistance and tumour progression. Br J Cancer. 106:1901–1906.
2012.
|
16
|
Guan J and Chen J: Mesenchymal stem cells
in the tumor micro-environment. Biomed Rep. 1:517–521. 2013.
|
17
|
Kidd S, Spaeth E, Watson K, Burks J, Lu H,
Klopp A, Andreeff M and Marini FC: Origins of the tumor
microenvironment: Quantitative assessment of adipose-derived and
bone marrow-derived stroma. PLoS One. 7:e305632012.
|
18
|
Deng J, Zou ZM, Zhou TL, Su YP, Ai GP,
Wang JP, Xu H and Dong SW: Bone marrow mesenchymal stem cells can
be mobilized into peripheral blood by G-CSF in vivo and integrate
into traumatically injured cerebral tissue. Neurol Sci. 32:641–651.
2011.
|
19
|
Kidd S, Spaeth E, Dembinski JL, Dietrich
M, Watson K, Klopp A, Battula VL, Weil M, Andreeff M and Marini FC:
Direct evidence of mesenchymal stem cell tropism for tumor and
wounding microenvironments using in vivo bioluminescent imaging.
Stem Cells. 27:2614–2623. 2009.
|
20
|
Roorda BD, ter Elst A, Kamps WA and de
Bont ES: Bone marrow-derived cells and tumor growth: Contribution
of bone marrow-derived cells to tumor micro-environments with
special focus on mesenchymal stem cells. Crit Rev Oncol Hematol.
69:187–198. 2009.
|
21
|
Li T, Zhang C, Ding Y, Zhai W, Liu K, Bu
F, Tu T, Sun L, Zhu W, Zhou F, et al: Umbilical cord-derived
mesenchymal stem cells promote proliferation and migration in MCF-7
and MDA-MB-231 breast cancer cells through activation of the ERK
pathway. Oncol Rep. 34:1469–1477. 2015.
|
22
|
Nawaz M, Fatima F, Vallabhaneni KC,
Penfornis P, Valadi H, Ekström K, Kholia S, Whitt JD, Fernandes JD,
Pochampally R, et al: Extracellular vesicles: Evolving factors in
stem cell biology. Stem Cells Int. 2016:10731402016.
|
23
|
Rani S, Ryan AE, Griffin MD and Ritter T:
Mesenchymal stem cell-derived extracellular vesicles: Toward
cell-free therapeutic applications. Mol Ther. 23:812–823. 2015.
|
24
|
Zhang Y, Chopp M, Meng Y, Katakowski M,
Xin H, Mahmood A and Xiong Y: Effect of exosomes derived from
multipluri-potent mesenchymal stromal cells on functional recovery
and neurovascular plasticity in rats after traumatic brain injury.
J Neurosurg. 122:856–867. 2015.
|
25
|
Gangadaran P, Hong CM and Ahn BC: Current
perspectives on in vivo noninvasive tracking of extracellular
vesicles with molecular imaging. BioMed Res Int.
2017:91583192017.
|
26
|
EL Andaloussi S, Mäger I, Breakefield XO
and Wood MJ: Extracellular vesicles: Biology and emerging
therapeutic opportunities. Nat Rev Drug Discov. 12:347–357.
2013.
|
27
|
Fong MY, Zhou W, Liu L, Alontaga AY,
Chandra M, Ashby J, Chow A, O’Connor ST, Li S, Chin AR, et al:
Breast-cancer-secreted miR-122 reprograms glucose metabolism in
premetastatic niche to promote metastasis. Nat Cell Biol.
17:183–194. 2015.
|
28
|
Goldie BJ, Dun MD, Lin M, Smith ND,
Verrills NM, Dayas CV and Cairns MJ: Activity-associated miRNA are
packaged in Map1b-enriched exosomes released from depolarized
neurons. Nucleic Acids Res. 42:9195–9208. 2014.
|
29
|
Crescitelli R, Lässer C, Szabó TG, Kittel
A, Eldh M, Dianzani I, Buzás EI and Lötvall J: Distinct RNA
profiles in subpopulations of extracellular vesicles: Apoptotic
bodies, microvesicles and exosomes. J Extracell Vesicles.
2:22013.
|
30
|
Peng J, Wang W, Hua S and Liu L: Roles of
extracellular vesicles in metastatic breast cancer. Breast Cancer
(Auckl). Apr 25–2018.Epub ahead of print. View Article : Google Scholar
|
31
|
Gu Y, Li T, Ding Y, Sun L, Tu T, Zhu W, Hu
J and Sun X: Changes in mesenchymal stem cells following long-term
culture in vitro. Mol Med Rep. 13:5207–5215. 2016.
|
32
|
Gould CM and Courtneidge SA: Regulation of
invadopodia by the tumor microenvironment. Cell Adhes Migr.
8:226–235. 2014.
|
33
|
Sun Z, Wang S and Zhao RC: The roles of
mesenchymal stem cells in tumor inflammatory microenvironment. J
Hematol Oncol. 7:142014.
|
34
|
Lai RC, Yeo RW and Lim SK: Mesenchymal
stem cell exosomes. Semin Cell Dev Biol. 40:82–88. 2015.
|
35
|
Ramdasi S, Sarang S and Viswanathan C:
Potential of mesenchymal stem cell based application in cancer. Int
J Hematol Oncol Stem Cell Res. 9:95–103. 2015.
|
36
|
Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan
Y, Wang M, Zhu W, Qian H and Xu W: Exosomes derived from human
mesenchymal stem cells confer drug resistance in gastric cancer.
Cell Cycle. 14:2473–2483. 2015.
|
37
|
Stenderup K, Justesen J, Clausen C and
Kassem M: Aging is associated with decreased maximal life span and
accelerated senescence of bone marrow stromal cells. Bone.
33:919–926. 2003.
|
38
|
Rao MS and Mattson MP: Stem cells and
aging: Expanding the possibilities. Mech Ageing Dev. 122:713–734.
2001.
|
39
|
Troyer DL and Weiss ML: Wharton’s
jelly-derived cells are a primitive stromal cell population. Stem
Cells. 26:591–599. 2008.
|
40
|
Secco M, Zucconi E, Vieira NM, Fogaça LL,
Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR and Zatz
M: Multipotent stem cells from umbilical cord: Cord is richer than
blood. Stem Cells. 26:146–150. 2008.
|
41
|
Yu PF, Huang Y, Han YY, Lin LY, Sun WH,
Rabson AB, Wang Y and Shi YF: TNFα-activated mesenchymal stromal
cells promote breast cancer metastasis by recruiting
CXCR2+ neutrophils. Oncogene. 36:482–490. 2017.
|
42
|
Coffman LG, Choi YJ, McLean K, Allen BL,
di Magliano MP and Buckanovich RJ: Human carcinoma-associated
mesenchymal stem cells promote ovarian cancer chemotherapy
resistance via a BMP4/HH signaling loop. Oncotarget. 7:6916–6932.
2016.
|
43
|
Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W,
Wei C, Wang X, Zhou S, Zhu J, et al: Human umbilical cord
mesenchymal stem cell-derived extracellular vesicles promote lung
adenocarcinoma growth by transferring miR-410. Cell Death Dis.
9:2182018.
|
44
|
Wu XB, Liu Y, Wang GH, Xu X, Cai Y, Wang
HY, Li YQ, Meng HF, Dai F and Jin JD: Mesenchymal stem cells
promote colorectal cancer progression through AMPK/mTOR-mediated
NF-κB activation. Sci Rep. 6:214202016.
|
45
|
Kim SH, Bang SH, Kang SY, Park KD, Eom JH,
Oh IU, Yoo SH, Kim CW and Baek SY: Human amniotic membrane-derived
stromal cells (hAMSC) interact depending on breast cancer cell type
through secreted molecules. Tissue Cell. 47:10–16. 2015.
|
46
|
Marofi F, Vahedi G, Biglari A,
Esmaeilzadeh A and Athari SS: Mesenchymal stromal/stem cells: A new
era in the cell-based targeted gene therapy of cancer. Front
Immunol. 8:17702017.
|
47
|
Song N, Gao L, Qiu H, Huang C, Cheng H,
Zhou H, Lv S, Chen L and Wang J: Mouse bone marrow-derived
mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation
in vitro and in a mouse model of allogeneic bone marrow transplant.
Int J Mol Med. 36:139–149. 2015.
|
48
|
Yulyana Y, Ho IA, Sia KC, Newman JP, Toh
XY, Endaya BB, Chan JK, Gnecchi M, Huynh H, Chung AY, et al:
Paracrine factors of human fetal MSCs inhibit liver cancer growth
through reduced activation of IGF-1R/PI3K/Akt signaling. Mol Ther.
23:746–756. 2015.
|
49
|
Klopp AH, Gupta A, Spaeth E, Andreeff M
and Marini F III: Concise review: Dissecting a discrepancy in the
literature: do mesenchymal stem cells support or suppress tumor
growth? Stem Cells. 29:11–19. 2011.
|
50
|
Melzer C, Yang Y and Hass R: Interaction
of MSC with tumor cells. Cell Commun Signal. 14:202016.
|
51
|
Chin AR and Wang SE: Cancer-derived
extracellular vesicles: The ‘soil conditioner’ in breast cancer
metastasis? Cancer Metastasis Rev. 35:669–676. 2016.
|
52
|
He C, Zheng S, Luo Y and Wang B: Exosome
theranostics: Biology and translational medicine. Theranostics.
8:237–255. 2018.
|
53
|
Ridge SM, Sullivan FJ and Glynn SA:
Mesenchymal stem cells: Key players in cancer progression. Mol
Cancer. 16:312017.
|
54
|
Yang H, Zhang H, Ge S, Ning T, Bai M, Li
J, Li S, Sun W, Deng T, Zhang L, et al: Exosome-derived miR-130a
activates angiogenesis in gastric cancer by targeting C-MYB in
vascular endothelial cells. Mol Ther. 26:2466–2475. 2018.
|
55
|
Colombo M, Raposo G and Théry C:
Biogenesis, secretion, and intercellular interactions of exosomes
and other extracellular vesicles. Annu Rev Cell Dev Biol.
30:255–289. 2014.
|
56
|
Xu R, Greening DW, Zhu HJ, Takahashi N and
Simpson RJ: Extracellular vesicle isolation and characterization:
Toward clinical application. J Clin Invest. 126:1152–1162.
2016.
|
57
|
Platanias LC: Map kinase signaling
pathways and hematologic malignancies. Blood. 101:4667–4679.
2003.
|
58
|
Xiao J, Yang S, Shen P, Wang Y, Sun H, Ji
F and Zhou D: Phosphorylation of ETV4 at Ser73 by ERK kinase could
block ETV4 ubiquitination degradation in colorectal cancer. Biochem
Biophys Res Commun. 486:1062–1068. 2017.
|
59
|
Jia S, Lu J, Qu T, Feng Y, Wang X, Liu C
and Ji J: MAGI1 inhibits migration and invasion via blocking
MAPK/ERK signaling pathway in gastric cancer. Chin J Cancer Res.
29:25–35. 2017.
|
60
|
Talbot LJ, Bhattacharya SD and Kuo PC:
Epithelial-mesenchymal transition, the tumor microenvironment, and
metastatic behavior of epithelial malignancies. Int J Biochem Mol
Biol. 3:117–136. 2012.
|