1
|
Aon MA, Cortassa S and O'Rourke B:
Redox-optimized ROS balance: A unifying hypothesis. Biochim Biophys
Acta. 1797:865–877. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Panieri E and Santoro MM: ROS homeostasis
and metabolism: A dangerous liason in cancer cells. Cell Death Dis.
7:e2253. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim YS, Gupta Vallur P, Phaëton R,
Mythreye K and Hempel N: Insights into the dichotomous regulation
of SOD2 in cancer. Antioxidants. 6:862017. View Article : Google Scholar
|
4
|
Weydert C, Roling B, Liu J, Hinkhouse MM,
Ritchie JM, Oberley LW and Cullen JJ: Suppression of the malignant
phenotype in human pancreatic cancer cells by the overexpression of
manganese superoxide dismutase. Mol Cancer Ther. 2:361–369.
2003.PubMed/NCBI
|
5
|
Zhong W, Oberley LW, Oberley TD and St
Clair DK: Suppression of the malignant phenotype of human glioma
cells by overexpression of manganese superoxide dismutase.
Oncogene. 14:481–490. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nelson KK, Ranganathan AC, Mansouri J,
Rodriguez AM, Providence KM, Rutter JL, Pumiglia K, Bennett JA and
Melendez JA: Elevated sod2 activity augments matrix
metal-loproteinase expression: Evidence for the involvement of
endogenous hydrogen peroxide in regulating metastasis. Clin Cancer
Res. 9:424–432. 2003.PubMed/NCBI
|
7
|
Connor KM, Hempel N, Nelson KK, Dabiri G,
Gamarra A, Belarmino J, Van De Water L, Mian BM and Melendez JA:
Manganese superoxide dismutase enhances the invasive and migratory
activity of tumor cells. Cancer Res. 67:10260–10267. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen PM, Wu TC, Shieh SH, Wu YH, Li MC,
Sheu GT, Cheng YW, Chen CY and Lee H: MnSOD promotes tumor invasion
via upregulation of FoxM1-MMP2 axis and related with poor survival
and relapse in lung adenocarcinomas. Mol Cancer Res. 11:261–271.
2013. View Article : Google Scholar
|
9
|
Malafa M, Margenthaler J, Webb B, Neitzel
L and Christophersen M: MnSOD expression is increased in metastatic
gastric cancer. J Surg Res. 88:130–134. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li S, Mao Y, Zhou T, Luo C, Xie J, Qi W,
Yang Z, Ma J, Gao G and Yang X: Manganese superoxide dismutase
mediates anoikis resistance and tumor metastasis in nasopharyngeal
carcinoma. Oncotarget. 7:32408–32420. 2016.PubMed/NCBI
|
11
|
Miar A, Hevia D, Muñoz-Cimadevilla H,
Astudillo A, Velasco J, Sainz RM and Mayo JC: Manganese superoxide
dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers
for tumor progression and metastasis in prostate, colon, and lung
cancer. Free Radic Biol Med. 85:45–55. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Porporato PE, Payen VL, Pérez-Escuredo J,
De Saedeleer CJ, Danhier P, Copetti T, Dhup S, Tardy M, Vazeille T,
Bouzin C, et al: A mitochondrial switch promotes tumor metastasis.
Cell Rep. 8:754–766. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Porporato PE and Sonveaux P: Paving the
way for therapeutic prevention of tumor metastasis with agents
targeting mitochondrial superoxide. Mol Cell Oncol. 2:e9680432014.
View Article : Google Scholar
|
14
|
Heim KE, Tagliaferro AR and Bobilya DJ:
Flavonoid antioxidants: Chemistry, metabolism and
structure-activity relationships. J Nutr Biochem. 13:572–584. 2002.
View Article : Google Scholar
|
15
|
Pietta PG: Flavonoids as antioxidants. J
Nat Prod. 63:1035–1042. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nijveldt RJ, van Nood E, van Hoorn DE,
Boelens PG, van Norren K and van Leeuwen PAM: Flavonoids: A review
of probable mechanisms of action and potential applications. Am J
Clin Nutr. 74:418–425. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Procházková D, Boušová I and Wilhelmová N:
Antioxidant and prooxidant properties of flavonoids. Fitoterapia.
82:513–523. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke
FC, Huang YT and Lee MT: The antitumor activities of flavonoids. In
Vivo. 19:895–909. 2005.PubMed/NCBI
|
19
|
Andarwulan N, Batari R, Sandrasari DA,
Bolling B and Wijaya H: Flavonoid content and antioxidant activity
of vegetables from Indonesia. Food Chem. 121:1231–1235. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cao J, Chen W, Zhang Y, Zhang Y and Zhao
X: Content of selected flavonoids in 100 edible vegetables and
fruits. Food Sci Technol Res. 16:395–402. 2010. View Article : Google Scholar
|
21
|
Huang YT, Hwang JJ, Lee PP, Ke FC, Huang
JH, Huang CJ, Kandaswami C, Middleton E Jr and Lee MT: Effects of
luteolin and quercetin, inhibitors of tyrosine kinase, on cell
growth and metastasis-associated properties in A431 cells
overexpressing epidermal growth factor receptor. Br J Pharmacol.
128:999–1010. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee LT, Huang YT, Hwang JJ, Lee PP, Ke FC,
Nair MP, Kanadaswam C and Lee MT: Blockade of the epidermal growth
factor receptor tyrosine kinase activity by quercetin and luteolin
leads to growth inhibition and apoptosis of pancreatic tumor cells.
Anticancer Res. 22:1615–1627. 2002.PubMed/NCBI
|
23
|
Fotsis T, Pepper MS, Aktas E, Breit S,
Rasku S, Adlercreutz H, Wähälä K, Montesano R and Schweigerer L:
Flavonoids, dietary-derived inhibitors of cell proliferation and in
vitro angio-genesis. Cancer Res. 57:2916–2921. 1997.PubMed/NCBI
|
24
|
Kawaii S, Tomono Y, Katase E, Ogawa K and
Yano M: Antiproliferative activity of flavonoids on several cancer
cell lines. Biosci Biotechnol Biochem. 63:896–899. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cherng JM, Shieh DE, Chiang W, Chang MY
and Chiang LC: Chemopreventive effects of minor dietary
constituents in common foods on human cancer cells. Biosci
Biotechnol Biochem. 71:1500–1504. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Takahashi T, Kobori M, Shinmoto H and
Tsushida T: Structure-activity relationships of flavonoids and the
induction of granulocytic- or monocytic-differentiation in HL60
human myeloid leukemia cells. Biosci Biotechnol Biochem.
62:2199–2204. 1998. View Article : Google Scholar
|
27
|
Leung HW, Kuo CL, Yang WH, Lin CH and Lee
HZ: Antioxidant enzymes activity involvement in luteolin-induced
human lung squamous carcinoma CH27 cell apoptosis. Eur J Pharmacol.
534:12–18. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kang KP, Park SK, Kim DH, Sung MJ, Jung
YJ, Lee AS, Lee JE, Ramkumar KM, Lee S, Park MH, et al: Luteolin
ameliorates cisplatin-induced acute kidney injury in mice by
regulation of p53-dependent renal tubular apoptosis. Nephrol Dial
Transplant. 26:814–822. 2011. View Article : Google Scholar
|
29
|
Sandhir R and Mehrotra A: Quercetin
supplementation is effective in improving mitochondrial
dysfunctions induced by 3-nitropropionic acid: Implications in
Huntington's disease. Biochim Biophys Acta. 1832:421–430. 2013.
View Article : Google Scholar
|
30
|
Mediratta PK, Banerjee BD, Halder S, Kar R
and Bhattacharya SK: Effect of chromium on
glutathione-S-transferase and catalase activity and their
respective gene expressions in the brain tissue of F1 generation
mice following prenatal exposure: Modulation by quercetin. J Clin
Toxicol. 7:3652017. View Article : Google Scholar
|
31
|
Kao WT, Lin CY, Lee LT, Lee PP, Hung CC,
Lin YS, Chen SH, Ke FC, Hwang JJ and Lee MT: Investigation of MMP-2
and -9 in a highly invasive A431 tumor cell sub-line selected from
a Boyden chamber assay. Anticancer Res. 28:2109–2120.
2008.PubMed/NCBI
|
32
|
Lin CY, Tsai PH, Kandaswami CC, Lee PP,
Huang CJ, Hwang JJ and Lee MT: Matrix metalloproteinase-9
cooperates with transcription factor Snail to induce
epithelial-mesenchymal transition. Cancer Sci. 102:815–827. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lin CY, Tsai PH, Kandaswami CC, Chang GD,
Cheng CH, Huang CJ, Lee PP, Hwang JJ and Lee MT: Role of tissue
transglu-taminase 2 in the acquisition of a mesenchymal-like
phenotype in highly invasive A431 tumor cells. Mol Cancer.
10:872011. View Article : Google Scholar
|
34
|
Lin YS, Tsai PH, Kandaswami CC, Cheng CH,
Ke FC, Lee PP, Hwang JJ and Lee MT: Effects of dietary flavonoids,
luteolin, and quercetin on the reversal of epithelial-mesenchymal
transition in A431 epidermal cancer cells. Cancer Sci.
102:1829–1839. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen KC, Hsu WH, Ho JY, Lin CW, Chu CY,
Kandaswami CC, Lee MT and Cheng CH: Flavonoids luteolin and
quercetin inhibit RPS19 and contributes to metastasis of cancer
cells through c-Myc reduction. J Food Drug Anal. 26:1180–1191.
2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lin CW, Lai GM, Chen KC, Lin TH, Fan JJ,
Hsu RL, Chou CM, Lin CM, Kandaswami CC, Lee MT, et al: RPS12
increases the invasiveness in cervical cancer activated by c-Myc
and inhibited by the dietary flavonoids luteolin and quercetin. J
Funct Foods. 19:236–247. 2015. View Article : Google Scholar
|
37
|
Lin TH, Hsu WH, Tsai PH, Huang YT, Lin CW,
Chen KC, Tsai IH, Kandaswami CC, Huang CJ, Chang GD, et al: Dietary
flavonoids, luteolin and quercetin, inhibit invasion of cervical
cancer by reduction of UBE2S through epithelial-mesenchymal
transition signaling. Food Funct. 8:1558–1568. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Beauchamp C and Fridovich I: Superoxide
dismutase: Improved assays and an assay applicable to acrylamide
gels. Anal Biochem. 44:276–287. 1971. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chin JR, Murphy G and Werb Z: Stromelysin,
a connective tissue-degrading metalloendopeptidase secreted by
stimulated rabbit synovial fibroblasts in parallel with
collagenase. Biosynthesis, isolation, characterization, and
substrates. J Biol Chem. 260:12367–12376. 1985.PubMed/NCBI
|
40
|
Nishikawa M: Reactive oxygen species in
tumor metastasis. Cancer Lett. 266:53–59. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Venkatesan B, Mahimainathan L, Das F,
Ghosh-Choudhury N and Ghosh Choudhury G: Downregulation of catalase
by reactive oxygen species via PI 3 kinase/Akt signaling in
mesangial cells. J Cell Physiol. 211:457–467. 2007. View Article : Google Scholar
|
42
|
Shen Y, Xu W, You H, Su D, Xing J, Li M,
Li L and Liang X: FoxO1 inhibits transcription and membrane
trafficking of epithelial Na+ channel. J Cell Sci.
128:3621–3630. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chang B, Yang H, Jiao Y, Wang K, Liu Z, Wu
P, Li S and Wang A: SOD2 deregulation enhances migration, invasion
and has poor prognosis in salivary adenoid cystic carcinoma. Sci
Rep. 6:259182016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen PM, Wu TC, Wang YC, Cheng YW, Sheu
GT, Chen CY and Lee H: Activation of NF-κB by SOD2 promotes the
aggressiveness of lung adenocarcinoma by modulating NKX21-mediated
IKKβ expression. Carcinogenesis. 34:2655–2663. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park
JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, et al:
Luteolin induces apoptotic cell death via antioxidant activity in
human colon cancer cells. Int J Oncol. 51:1169–1178. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Li Y, Shen L and Luo H: Luteolin
ameliorates dextran sulfate sodium-induced colitis in mice possibly
through activation of the Nrf2 signaling pathway. Int
Immunopharmacol. 40:24–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dias AS, Porawski M, Alonso M, Marroni N,
Collado PS and González-Gallego J: Quercetin decreases oxidative
stress, NF-κB activation, and iNOS overexpression in liver of
strepto-zotocin-induced diabetic rats. J Nutr. 135:2299–2304. 2005.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ben Abdallah F, Zribi N and Ammar-Keskes
L: Antioxidative potential of Quercetin against hydrogen peroxide
induced oxidative stress in spermatozoa in vitro. Andrologia.
43:261–265. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nabavi SF, Nabavi SM, Latifi AM, Mirzaei
M, Habtemariam S and Moghaddam AH: Mitigating role of quercetin
against sodium fluoride-induced oxidative stress in the rat brain.
Pharm Biol. 50:1380–1383. 2012. View Article : Google Scholar : PubMed/NCBI
|