1
|
Hori M, Matsuda T, Shibata A, Katanoda K,
Sobue T and Nishimoto H; Japan Cancer Surveillance Research Group:
Cancer incidence and incidence rates in Japan in 2009: A study of
32 population-based cancer registries for the Monitoring of Cancer
Incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 45:884–891.
2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nishiyama H, Habuchi T, Watanabe J,
Teramukai S, Tada H, Ono Y, Ohshima S, Fujimoto K, Hirao Y,
Fukushima M, et al: Clinical outcome of a large-scale
multi-institutional retrospective study for locally advanced
bladder cancer: A survey including 1131 patients treated during
1990-2000 in Japan. Eur Urol. 45:176–181. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Grossman HB, Natale RB, Tangen CM,
Speights VO, Vogelzang NJ, Trump DL, deVere White RW, Sarosdy MF,
Wood DP Jr, Raghavan D, et al: Neoadjuvant chemotherapy plus
cystectomy compared with cystectomy alone for locally advanced
bladder cancer. N Engl J Med. 349:859–866. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vale CL; Advanced Bladder Cancer (ABC)
Meta-analysis Collaboration: Neoadjuvant chemotherapy in invasive
bladder cancer: Update of a systematic review and meta-analysis of
individual patient data advanced bladder cancer (ABC) meta-analysis
collaboration. Eur Urol. 48:202–205; discussion 205–206. 2005.
View Article : Google Scholar
|
6
|
Leow JJ, Martin-Doyle W, Rajagopal PS,
Patel CG, Anderson EM, Rothman AT, Cote RJ, Urun Y, Chang SL,
Choueiri TK, et al: Adjuvant chemotherapy for invasive bladder
cancer: A 2013 updated systematic review and meta-analysis of
randomized trials. Eur Urol. 66:42–54. 2014. View Article : Google Scholar
|
7
|
von der Maase H, Sengelov L, Roberts JT,
Ricci S, Dogliotti L, Oliver T, Moore MJ, Zimmermann A and Arning
M: Long-term survival results of a randomized trial comparing
gemcitabine plus cisplatin, with methotrexate, vinblastine,
doxorubicin, plus cisplatin in patients with bladder cancer. J Clin
Oncol. 23:4602–4608. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sternberg CN, de Mulder PH, Schornagel JH,
Théodore C, Fossa SD, van Oosterom AT, Witjes F, Spina M, van
Groeningen CJ, de Balincourt C, et al European Organization for
Research and Treatment of Cancer Genitourinary Tract Cancer
Cooperative Group: Randomized phase III trial of
high-dose-intensity methotrexate, vinblastine, doxorubicin, and
cisplatin (MVAC) chemotherapy and recombinant human granulocyte
colony-stimulating factor versus classic MVAC in advanced
urothelial tract tumors: European Organization for Research and
Treatment of Cancer Protocol no 30924. J Clin Oncol. 19:2638–2646.
2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kotake T, Usami M, Miki T, Togashi M,
Akaza H, Kubota Y and Matsumura Y: Effect of recombinant human
granulocyte colony stimulating factor (lenograstim) on chemotherapy
induced neutropenia in patients with urothelial cancer. Int J Urol.
6:61–67. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
García-Carbonero R, Mayordomo JI,
Tornamira MV, López-Brea M, Rueda A, Guillem V, Arcediano A, Yubero
A, Ribera F, Gómez C, et al: Granulocyte colony-stimulating factor
in the treatment of high-risk febrile neutropenia: A multicenter
randomized trial. J Natl Cancer Inst. 93:31–38. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Clark OA, Lyman GH, Castro AA, Clark LG
and Djulbegovic B: Colony-stimulating factors for
chemotherapy-induced febrile neutropenia: A meta-analysis of
randomized controlled trials. J Clin Oncol. 23:4198–4214. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ohno R, Miyawaki S, Hatake K, Kuriyama K,
Saito K, Kanamaru A, Kobayashi T, Kodera Y, Nishikawa K, Matsuda S,
et al: Human urinary macrophage colony-stimulating factor reduces
the incidence and duration of febrile neutropenia and shortens the
period required to finish three courses of intensive consolidation
therapy in acute myeloid leukemia: A double-blind controlled study.
J Clin Oncol. 15:2954–2965. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Barreda DR, Hanington PC and Belosevic M:
Regulation of myeloid development and function by colony
stimulating factors. Dev Comp Immunol. 28:509–554. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Welte K, Platzer E, Lu L, Gabrilove JL,
Levi E, Mertelsmann R and Moore MA: Purification and biochemical
characterization of human pluripotent hematopoietic
colony-stimulating factor. Proc Natl Acad Sci USA. 82:1526–1530.
1985. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chakraborty A and Guha S: Granulocyte
colony-stimulating factor/granulocyte colony-stimulating factor
receptor biological axis promotes survival and growth of bladder
cancer cells. Urology. 69:1210–1215. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chakraborty A, White SM and Guha S:
Granulocyte colony-stimulating receptor promotes
beta1-integrin-mediated adhesion and invasion of bladder cancer
cells. Urology. 68:208–213. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yokoyama T, Hyodo M, Hosoya Y, Koinuma K,
Kurashina K, Saitoh S, Hirashima Y, Arai W, Zuiki T, Yasuda Y, et
al: Aggressive G-CSF-producing gastric cancer complicated by lung
and brain abscesses, mimicking metastases. Gastric Cancer.
8:198–201. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng
Q, Wang Y, Yuan W and Ma J: G-CSF is a key modulator of MDSC and
could be a potential therapeutic target in colitis-associated
colorectal cancers. Protein Cell. 7:130–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Demirci U, Coskun U, Sancak B, Ozturk B,
Bahar B, Benekli M and Buyukberber S: Serum granulocyte
macrophage-colony stimulating factor: A tumor marker in colorectal
carcinoma. Asian Pac J Cancer Prev. 10:1021–1024. 2009.
|
20
|
Urdinguio RG, Fernandez AF, Moncada-Pazos
A, Huidobro C, Rodriguez RM, Ferrero C, Martinez-Camblor P, Obaya
AJ, Bernal T, Parra-Blanco A, et al: Immune-dependent and
independent antitumor activity of GM-CSF aberrantly expressed by
mouse and human colorectal tumors. Cancer Res. 73:395–405. 2013.
View Article : Google Scholar
|
21
|
Wei XX, Chan S, Kwek S, Lewis J, Dao V,
Zhang L, Cooperberg MR, Ryan CJ, Lin AM, Friedlander TW, et al:
Systemic GM-CSF Recruits Effector T Cells into the Tumor
Microenvironment in Localized Prostate Cancer. Cancer Immunol Res.
4:948–958. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Van Overmeire E, Stijlemans B, Heymann F,
Keirsse J, Morias Y, Elkrim Y, Brys L, Abels C, Lahmar Q, Ergen C,
et al: M-CSF and GM-CSF Receptor Signaling Differentially Regulate
Monocyte Maturation and Macrophage Polarization in the Tumor
Microenvironment. Cancer Res. 76:35–42. 2016. View Article : Google Scholar
|
23
|
Mugabe C, Matsui Y, So AI, Gleave ME,
Baker JH, Minchinton AI, Manisali I, Liggins R, Brooks DE and Burt
HM: In vivo evaluation of mucoadhesive nanoparticulate docetaxel
for intravesical treatment of non-muscle-invasive bladder cancer.
Clin Cancer Res. 17:2788–2798. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hori S, Miyake M, Onishi S, Tatsumi Y,
Morizawa Y, Nakai Y, Anai S, Tanaka N and Fujimoto K: Clinical
significance of α and β Klotho in urothelial carcinoma of the
bladder. Oncol Rep. 36:2117–2125. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Weidner N, Semple JP, Welch WR and Folkman
J: Tumor angiogenesis and metastasis - correlation in invasive
breast carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hori S, Miyake M, Tatsumi Y, Morizawa Y,
Nakai Y, Onishi S, Onishi K, Iida K, Gotoh D, Tanaka N, et al:
Gamma-Klotho exhibits multiple roles in tumor growth of human
bladder cancer. Oncotarget. 9:19508–19524. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Miyake M, Hori S, Morizawa Y, Tatsumi Y,
Nakai Y, Anai S, Torimoto K, Aoki K, Tanaka N, Shimada K, et al:
CXCL1-Mediated Interaction of Cancer Cells with Tumor-Associated
Macrophages and Cancer-Associated Fibroblasts Promotes Tumor
Progression in Human Bladder Cancer. Neoplasia. 18:636–646. 2016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Raj L, Ide T, Gurkar AU, Foley M, Schenone
M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, et al:
Selective killing of cancer cells by a small molecule targeting the
stress response to ROS. Nature. 475:231–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Segawa K, Ueno Y and Kataoka T: In vivo
tumor growth enhancement by granulocyte colony-stimulating factor.
Jpn J Cancer Res. 82:440–447. 1991. View Article : Google Scholar : PubMed/NCBI
|
30
|
Okazaki T, Ebihara S, Asada M, Kanda A,
Sasaki H and Yamaya M: Granulocyte colony-stimulating factor
promotes tumor angiogenesis via increasing circulating endothelial
progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int
Immunol. 18:1–9. 2006. View Article : Google Scholar
|
31
|
Lyden D, Hattori K, Dias S, Costa C,
Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et
al: Impaired recruitment of bone-marrow-derived endothelial and
hemato-poietic precursor cells blocks tumor angiogenesis and
growth. Nat Med. 7:1194–1201. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Davidoff AM, Ng CY, Brown P, Leary MA,
Spurbeck WW, Zhou J, Horwitz E, Vanin EF and Nienhuis AW: Bone
marrow-derived cells contribute to tumor neovasculature and, when
modified to express an angiogenesis inhibitor, can restrict tumor
growth in mice. Clin Cancer Res. 7:2870–2879. 2001.PubMed/NCBI
|
33
|
Kelly ME, Mohan HM, Baird AW, Ryan EJ and
Winter DC: Orphan Nuclear Receptors in Colorectal Cancer. Pathol
Oncol Res. 24:815–819. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee AS, Kim D, Wagle SR, Lee JE, Jung YJ,
Kang KP, Lee S, Park SK and Kim W: Granulocyte colony-stimulating
factor induces in vitro lymphangiogenesis. Biochem Biophys Res
Commun. 436:565–570. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fiorentini S, Luganini A, Dell’Oste V,
Lorusso B, Cervi E, Caccuri F, Bonardelli S, Landolfo S, Caruso A
and Gribaudo G: Human cytomegalovirus productively infects
lymphatic endo-thelial cells and induces a secretome that promotes
angiogenesis and lymphangiogenesis through interleukin-6 and
granu-locyte-macrophage colony-stimulating factor. J Gen Virol.
92:650–660. 2011. View Article : Google Scholar
|
36
|
Kitoh Y, Saio M, Gotoh N, Umemura N,
Nonaka K, Bai J, Vizkeleti L, Torocsik D, Balazs M, Adany R, et al:
Combined GM-CSF treatment and M-CSF inhibition of tumor-associated
macrophages induces dendritic cell-like signaling in vitro. Int J
Oncol. 38:1409–1419. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Elghonaimy EA, Ibrahim SA, Youns A,
Hussein Z, Nouh MA, El-Mamlouk T, El-Shinawi M and Mostafa Mohamed
M: Secretome of tumor-associated leukocytes augment
epithelial-mesenchymal transition in positive lymph node breast
cancer patients via activation of EGFR/Tyr845 and NF-κB/p65
signaling pathway. Tumour Biol. 37:12441–12453. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cui YH, Suh Y, Lee HJ, Yoo KC, Uddin N,
Jeong YJ, Lee JS, Hwang SG, Nam SY, Kim MJ, et al: Radiation
promotes invasiveness of non-small-cell lung cancer cells through
granulocyte-colony-stimulating factor. Oncogene. 34:5372–5382.
2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu
HY, Wang JS and Duan XY: High tumor-associated macrophages
infiltration is associated with poor prognosis and may contribute
to the phenomenon of epithelial-mesenchymal transition in gastric
cancer. OncoTargets Ther. 9:3975–3983. 2016. View Article : Google Scholar
|