1
|
Kamisawa T, Wood LD, Itoi T and Takaori K:
Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kamisawa T, Isawa T, Koike M, Tsuruta K
and Okamoto A: Hematogenous metastases of pancreatic ductal
carcinoma. Pancreas. 11:345–349. 1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
Conroy T, Bachet JB, Ayav A, Huguet F,
Lambert A, Caramella C, Maréchal R, Van Laethem JL and Ducreux M:
Current standards and new innovative approaches for treatment of
pancreatic cancer. Eur J Cancer. 57:10–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bonnans C, Chou J and Werb Z: Remodelling
the extracellular matrix in development and disease. Nat Rev Mol
Cell Biol. 15:786–801. 2014. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Shen TC, Chang WS, Tsai CW, Chao CY, Lin
YT, Hsiao CL, Hsu CL, Chen WC, Hsia TC and Bau DT: The contribution
of matrix metalloproteinase-1 promoter genotypes in Taiwan lung
cancer risk. Anticancer Res. 38:253–257. 2018.
|
6
|
Padala C, Tupurani MA, Puranam K, Gantala
S, Shyamala N, Kondapalli MS, Gundapaneni KK, Mudigonda S, Galimudi
RK, Kupsal K, et al: : Synergistic effect of collagenase-1 (MMP1),
stromelysin-1 (MMP3) and gelatinase-B (MMP9) gene polymorphisms in
breast cancer. PLoS One. 12:e01844482017. View Article : Google Scholar
|
7
|
Hu W, Ye Y, Yin Y, Sang P, Li L, Wang J,
Wan W, Li R, Bai X, Xie Y, et al: Association of matrix
metalloprotease 1, 3, and 12 polymorphisms with rheumatic heart
disease in a Chinese Han population. BMC Med Genet. 19:272018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ou Z, Wang Y, Liu L, Li L, Yeh S, Qi L and
Chang C: Tumor microenvironment B cells increase bladder cancer
metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs
signals. Oncotarget. 6:26065–26078. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang G, Im HJ and Wang JH: Repetitive
mechanical stretching modulates IL-1beta induced COX-2, MMP-1
expression, and PGE-2 production in human patellar tendon
fibroblasts. Gene. 363:166–172. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li R, Hebert JD, Lee TA, Xing H,
Boussommier-Calleja A, Hynes RO, Lauffenburger DA and Kamm RD:
Macrophage-secreted TNFα and TGFβ1 influence migration speed and
persistence of cancer cells in 3D tissue culture via independent
pathways. Cancer Res. 77:279–290. 2017. View Article : Google Scholar
|
11
|
Croce CM: Oncogenes and cancer. N Engl J
Med. 358:502–511. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rozario T and DeSimone DW: The
extracellular matrix in development and morphogenesis: A dynamic
view. Dev Biol. 341:126–140. 2010. View Article : Google Scholar :
|
13
|
Marchesi F, Regazzo G, Palombi F,
Terrenato I, Sacconi A, Spagnuolo M, Donzelli S, Marino M, Ercolani
C, Di Benedetto A, et al: Serum miR-22 as potential non-invasive
predictor of poor clinical outcome in newly diagnosed, uniformly
treated patients with diffuse large B-cell lymphoma: An explorative
pilot study. J Exp Clin Cancer Res. 37:952018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Samir N, Matboli M, El-Tayeb H, El-Tawdi
A, Hassan MK, Waly A, El-Akkad HAE, Ramadan MG, Al-Belkini TN,
El-Khamisy S, et al: Competing endogenous RNA network crosstalk
reveals novel molecular markers in colorectal cancer. J Cell
Biochem. 119:6869–6881. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Frampton AE, Castellano L, Colombo T,
Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel
N, Gall TM, et al: Integrated molecular analysis to investigate the
role of microRNAs in pancreatic tumour growth and progression.
Lancet. 385(Suppl 1): S372015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Y, Lin X, Zhang L, Hong W and Zeng
K: MicroRNA-222 regulates the viability of fibroblasts in
hypertrophic scars via matrix metalloproteinase 1. Exp Ther Med.
15:1803–1808. 2018.PubMed/NCBI
|
17
|
Kim KH, Jung JY, Son ED, Shin DW, Noh M
and Lee TR: miR-526b targets 3′ UTR of MMP1 mRNA. Exp Mol Med.
47:e1782015. View Article : Google Scholar
|
18
|
Wang Y, Pang X, Wu J, Jin L, Yu Y, Gobin R
and Yu J: MicroRNA hsa-let-7b suppresses the odonto/osteogenic
differentiation capacity of stem cells from apical papilla by
targeting MMP1. J Cell Biochem. 119:6545–6554. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y
and Zuo X: MicroRNA-202-3p regulates scleroderma fibrosis by
targeting matrix metalloproteinase 1. Biomed Pharmacother.
87:412–418. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu D, Green B, Marrone A, Guo Y, Kadlubar
S, Lin D, Fuscoe J, Pogribny I and Ning B: Suppression of CYP2C9 by
microRNA hsa-miR-128-3p in human liver cells and association with
hepatocellular carcinoma. Sci Rep. 5:85342015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen Y, Zeng L, Wang Y, Tolleson WH, Knox
B, Chen S, Ren Z, Guo L, Mei N, Qian F, et al: The expression,
induction and pharmacological activity of CYP1A2 are
post-transcriptionally regulated by microRNA hsa-miR-132-5p.
Biochem Pharmacol. 145:178–191. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen L, Fan J, Chen H, Meng Z, Chen Z,
Wang P and Liu L: The IL-8/CXCR1 axis is associated with cancer
stem cell-like properties and correlates with clinical prognosis in
human pancreatic cancer cases. Sci Rep. 4:59112014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jaillon S, Peri G, Delneste Y, Frémaux I,
Doni A, Moalli F, Garlanda C, Romani L, Gascan H, Bellocchio S, et
al: The humoral pattern recognition receptor PTX3 is stored in
neutrophil granules and localizes in extracellular traps. J Exp
Med. 204:793–804. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
25
|
Zhang G, Schetter A, He P, Funamizu N,
Gaedcke J, Ghadimi BM, Ried T, Hassan R, Yfantis HG, Lee DH, et al:
: DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity
and predicts clinical outcome in pancreatic ductal adenocarcinoma.
PLoS One. 7:e315072012. View Article : Google Scholar
|
26
|
Donahue TR, Tran LM, Hill R, Li Y,
Kovochich A, Calvopina JH, Patel SG, Wu N, Hindoyan A, Farrell JJ,
et al: Integrative survival-based molecular profiling of human
pancreatic cancer. Clin Cancer Res. 18:1352–1363. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zeng L, Chen Y, Wang Y, Yu LR, Knox B,
Chen J, Shi T, Chen S, Ren Z, Guo L, et al: : MicroRNA
hsa-miR-370-3p suppresses the expression and induction of CYP2D6 by
facilitating mRNA degradation. Biochem Pharmacol. 140:139–149.
2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Y, Yu D, Tolleson WH, Yu LR, Green B,
Zeng L, Chen Y, Chen S, Ren Z, Guo L, et al: A systematic
evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem
Pharmacol. 138:174–184. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jin Y, Yu D, Tolleson WH, Knox B, Wang Y,
Chen S, Ren Z, Deng H, Guo Y and Ning B: MicroRNA hsa-miR-25-3p
suppresses the expression and drug induction of CYP2B6 in human
hepatocytes. Biochem Pharmacol. 113:88–96. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Trenkmann M, Brock M, Gay RE, Michel BA,
Gay S and Huber LC: Tumor necrosis factor α-induced microRNA-18a
activates rheumatoid arthritis synovial fibroblasts through a
feedback loop in NF-κB signaling. Arthritis Rheum. 65:916–927.
2012. View Article : Google Scholar
|
31
|
Yoon HY, Lee EG, Lee H, Cho IJ, Choi YJ,
Sung MS, Yoo HG and Yoo WH: Kaempferol inhibits IL-1β-induced
proliferation of rheumatoid arthritis synovial fibroblasts and the
production of COX-2, PGE2 and MMPs. Int J Mol Med. 32:971–977.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sánchez-Lorencio MI, Saenz L, Ramirez P,
Villalba-López F, de la Orden V, Mediero-Valeros B, Revilla Nuin B,
Gonzalez MR, Cascales-Campos PA, Ferreras-Martínez D, et al: Matrix
metalloproteinase 1 as a novel biomarker for monitoring
hepatocellular carcinoma in liver transplant patients. Transplant
Proc. 50:623–627. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Trivedi V, Boire A, Tchernychev B,
Kaneider NC, Leger AJ, O'Callaghan K, Covic L and Kuliopulos A:
Platelet matrix metalloprotease-1 mediates thrombogenesis by
activating PAR1 at a cryptic ligand site. Cell. 137:332–343. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Austin KM, Nguyen N, Javid G, Covic L and
Kuliopulos A: Noncanonical matrix
metalloprotease-1-protease-activated receptor-1 signaling triggers
vascular smooth muscle cell dedifferentiation and arterial
stenosis. J Biol Chem. 288:23105–23115. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rana R, Huang T, Koukos G, Fletcher EK,
Turner SE, Shearer A, Gurbel PA, Rade JJ, Kimmelstiel CD, Bliden
KP, et al: Noncanonical matrix metalloprotease 1-protease-activated
receptor 1 signaling drives progression of atherosclerosis.
Arterioscler Thromb Vasc Biol. 38:1368–1380. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Juncker-Jensen A, Deryugina EI, Rimann I,
Zajac E, Kupriyanova TA, Engelholm LH and Quigley JP: Tumor MMP-1
activates endothelial PAR1 to facilitate vascular intravasation and
metastatic dissemination. Cancer Res. 73:4196–4211. 2013.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Goerge T, Barg A, Schnaeker EM, Poppelmann
B, Shpacovitch V, Rattenholl A, Maaser C, Luger TA, Steinhoff M and
Schneider SW: Tumor-derived matrix metalloproteinase-1 targets
endothelial proteinase-activated receptor 1 promoting endothelial
cell activation. Cancer Res. 66:7766–7774. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gopal SK, Greening DW, Zhu HJ, Simpson RJ
and Mathias RA: Transformed MDCK cells secrete elevated MMP1 that
generates LAMA5 fragments promoting endothelial cell angiogenesis.
Sci Rep. 6:283212016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang C, Li Y, Guo Y, Zhang Z, Lian G,
Chen Y, Li J, Su Y, Li J, Yang K, et al: MMP1/PAR1/SP/NK1R
paracrine loop modulates early perineural invasion of pancreatic
cancer cells. Theranostics. 8:3074–3086. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bramhall SR, Rosemurgy A, Brown PD, Bowry
C and Buckels JA; Marimastat Pancreatic Cancer Study Group:
Marimastat as first-line therapy for patients with unresectable
pancreatic cancer: A randomized trial. J Clin Oncol. 19:3447–3455.
2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bramhall SR, Schulz J, Nemunaitis J, Brown
PD, Baillet M and Buckels JA: A double-blind placebo-controlled,
randomised study comparing gemcitabine and marimastat with
gemcitabine and placebo as first line therapy in patients with
advanced pancreatic cancer. Br J Cancer. 87:161–167. 2002.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Endo H, Watanabe T, Sugioka Y, Niioka M,
Inagaki Y and Okazaki I: Activation of two distinct MAPK pathways
governs constitutive expression of matrix metalloproteinase-1 in
human pancreatic cancer cell lines. Int J Oncol. 35:1237–1245.
2009.PubMed/NCBI
|
43
|
Maksymowych WP, van der Heijde D, Allaart
CF, Landewé R, Boire G, Tak PP, Gui Y, Ghahary A, Kilani R and
Marotta A: 14-3-3η is a novel mediator associated with the
pathogenesis of rheumatoid arthritis and joint damage. Arthritis
Res Ther. 16:R992014. View
Article : Google Scholar
|
44
|
Ha NH, Park DG, Woo BH, Kim DJ, Choi JI,
Park BS, Kim YD, Lee JH and Park HR: Porphyromonas gingivalis
increases the invasiveness of oral cancer cells by upregulating
IL-8 and MMPs. Cytokine. 86:64–72. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Gregory RI, Chendrimada TP, Cooch N and
Shiekhattar R: Human RISC couples microRNA biogenesis and
posttranscriptional gene silencing. Cell. 123:631–640. 2005.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wei S, Zhang ZY, Fu SL, Xie JG, Liu XS, Xu
YJ, Zhao JP and Xiong WN: Hsa-miR-623 suppresses tumor progression
in human lung adenocarcinoma. Cell Death Dis. 8:e28292017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Nieto MA, Huang RY, Jackson RA and Thiery
JP: Emt: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Onder TT, Gupta PB, Mani SA, Yang J,
Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis
via multiple downstream transcriptional pathways. Cancer Res.
68:3645–3654. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Dominguez C, David JM and Palena C:
Epithelial-mesenchymal transition and inflammation at the site of
the primary tumor. Semin Cancer Biol. 47:177–184. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ding XM: MicroRNAs: Regulators of cancer
metastasis and epithelial-mesenchymal transition (EMT). Chin J
Cancer. 33:140–147. 2014. View Article : Google Scholar :
|
51
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial- mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nasser MW, Raghuwanshi SK, Grant DJ, Jala
VR, Rajarathnam K and Richardson RM: Differential activation and
regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J
Immunol. 183:3425–3432. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Agarwal A, Tressel SL, Kaimal R, Balla M,
Lam FH, Covic L and Kuliopulos A: Identification of a
metalloprotease-chemokine signaling system in the ovarian cancer
microenvironment: Implications for antiangiogenic therapy. Cancer
Res. 70:5880–5890. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Queiroz KC, Shi K, Duitman J, Aberson HL,
Wilmink JW, van Noesel CJ, Richel DJ and Spek CA:
Protease-activated receptor-1 drives pancreatic cancer progression
and chemoresistance. Int J Cancer. 135:2294–2304. 2014. View Article : Google Scholar : PubMed/NCBI
|