The XIAP inhibitor embelin sensitises malignant rhabdoid tumour cells to TRAIL treatment via enhanced activation of the extrinsic apoptotic pathway
- Authors:
- Rachel Coyle
- Karen Slattery
- Leanne Ennis
- Maureen J. O'sullivan
- Daniela M. Zisterer
-
Affiliations: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland, The National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland - Published online on: May 20, 2019 https://doi.org/10.3892/ijo.2019.4804
- Pages: 191-202
This article is mentioned in:
Abstract
Brennan B, Stiller C and Bourdeaut F: Extracranial rhabdoid tumours: What we have learned so far and future directions. Lancet Oncol. 14:e329–e336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Geller JI, Roth JJ and Biegel JA: Biology and Treatment of Rhabdoid Tumor. Crit Rev Oncog. 20:199–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Biegel JA, Kalpana G, Knudsen ES, Packer RJ, Roberts CW, Thiele CJ, Weissman B and Smith M: The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: Meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Res. 62:323–328. 2002.PubMed/NCBI | |
Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A and Delattre O: Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 394:203–206. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hasselblatt M, Isken S, Linge A, Eikmeier K, Jeibmann A, Oyen F, Nagel I, Richter J, Bartelheim K, Kordes U, et al: High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosomes Cancer. 52:185–190. 2013. View Article : Google Scholar | |
Kieran MW, Roberts CW, Chi SN, Ligon KL, Rich BE, Macconaill LE, Garraway LA and Biegel JA: Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatric Blood Cancer. 59:1155–1157. 2012. View Article : Google Scholar : PubMed/NCBI | |
McKenna ES, Sansam CG, Cho YJ, Greulich H, Evans JA, Thom CS, Moreau LA, Biegel JA, Pomeroy SL and Roberts CW: Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol. 28:6223–6233. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lafay-Cousin L, Hawkins C, Carret AS, Johnston D, Zelcer S, Wilson B, Jabado N, Scheinemann K, Eisenstat D, Fryer C, et al: Central nervous system atypical teratoid rhabdoid tumours: The Canadian Paediatric Brain Tumour Consortium experience. Eur J Cancer. 48:353–359. 2012. View Article : Google Scholar | |
Tekautz TM, Fuller CE, Blaney S, Fouladi M, Broniscer A, Merchant TE, Krasin M, Dalton J, Hale G, Kun LE, et al: Atypical teratoid/rhabdoid tumors (ATRT): Improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 23:1491–1499. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chi SN, Zimmerman MA, Yao X, Cohen KJ, Burger P, Biegel JA, Rorke-Adams LB, Fisher MJ, Janss A, Mazewski C, et al: Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 27:385–389. 2009. View Article : Google Scholar : | |
Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, et al: Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 5:157–163. 1999. View Article : Google Scholar : PubMed/NCBI | |
Walczak H: Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 5:a0086982013. View Article : Google Scholar : PubMed/NCBI | |
Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar | |
Ouchi K, Kuwahara Y, Iehara T, Miyachi M, Katsumi Y, Tsuchiya K, Konishi E, Yanagisawa A and Hosoi H: A NOXA/MCL-1 Imbalance Underlies Chemoresistance of Malignant Rhabdoid Tumor Cells. J Cell Physiol. 231:1932–1940. 2016. View Article : Google Scholar | |
Cai JH, Fu SM, Tu ZH, Deng LQ, Liang Z, Chen XP, Gong XJ and Wan LH: Survivin gene functions and relationships between expression and prognosis in patients with nasopharyngeal carcinoma. Asian Pac J Cancer Prev. 16:2341–2345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Qiu L, Hou J, Zhang X, Ke X, Wang Z, Zhou F, Yang S, Zhao Y, Leng Y, et al: Phase Ib Study of Recombinant Circularly Permuted TRAIL (CPT) in Relapsed or Refractory multiple Myeloma Patients. Blood. 120:18572012. | |
Hotte SJ, Hirte HW, Chen EX, Siu LL, Le LH, Corey A, Iacobucci A, MacLean M, Lo L, Fox NL and Oza AM: A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res. 14:3450–3455. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Xu R, Peach M, Huang CP, Branstetter D, Novotny W, Herbst RS, Eckhardt SG and Holland PM: Evaluation of pharmacodynamic biomarkers in a Phase 1a trial of dulanermin (rhApo2L/TRAIL) in patients with advanced tumours. Br J Cancer. 105:1830–1838. 2011. View Article : Google Scholar : PubMed/NCBI | |
Soria JC, Márk Z, Zatloukal P, Szima B, Albert I, Juhász E, Pujol JL, Kozielski J, Baker N, Smethurst D, et al: Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol. 29:4442–4451. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cho SB, Lee WS, Park YL, Kim N, Oh HH, Kim MY, Oak CY, Chung CY, Park HC, Kim JS, et al: Livin is associated with the invasive and oncogenic phenotypes of human hepatocellular carcinoma cells. Hepatol Res. 45:448–457. 2015. View Article : Google Scholar | |
Dasgupta A, Alvarado CS, Xu Z and Findley HW: Expression and functional role of inhibitor-of-apoptosis protein livin (BIRC7) in neuroblastoma. Biochem Biophys Res Commun. 400:53–59. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kempkensteffen C, Hinz S, Christoph F, Köllermann J, Krause H, Schrader M, Schostak M, Miller K and Weikert S: Expression parameters of the inhibitors of apoptosis cIAP1 and cIAP2 in renal cell carcinomas and their prognostic relevance. Int J Cancer. 120:1081–1086. 2007. View Article : Google Scholar | |
Kim DK, Alvarado CS, Abramowsky CR, Gu L, Zhou M, Soe MM, Sullivan K, George B, Schemankewitz E and Findley HW: Expression of inhibitor-of-apoptosis protein (IAP) livin by neuroblastoma cells: correlation with prognostic factors and outcome. Pediatr Dev Pathol. 8:621–629. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mizutani Y, Nakanishi H, Li YN, Matsubara H, Yamamoto K, Sato N, Shiraishi T, Nakamura T, Mikami K, Okihara K, et al: Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int J Oncol. 30:919–925. 2007.PubMed/NCBI | |
Ramp U, Krieg T, Caliskan E, Mahotka C, Ebert T, Willers R, Gabbert HE and Gerharz CD: XIAP expression is an independent prognostic marker in clear-cell renal carcinomas. Hum Pathol. 35:1022–1028. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shi YH, Ding WX, Zhou J, He JY, Xu Y, Gambotto AA, Rabinowich H, Fan J and Yin XM: Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology. 48:497–507. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, et al: Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 6:1796–1803. 2000.PubMed/NCBI | |
Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, Scholz F, Karawajew L, Ludwig WD and Wuchter C: High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res. 10:3737–3744. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Park YC, Rich RL, Segal D, Myszka DG and Wu H: Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain. Cell. 104:781–790. 2001.PubMed/NCBI | |
Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC and Salvesen GS: Structural basis for the inhibition of caspase-3 by XIAP. Cell. 104:791–800. 2001. View Article : Google Scholar : PubMed/NCBI | |
Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M and Salvesen GS: XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 24:645–655. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R and Shi Y: Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 11:519–527. 2003. View Article : Google Scholar : PubMed/NCBI | |
Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, et al: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 410:112–116. 2001. View Article : Google Scholar : PubMed/NCBI | |
Suzuki Y, Nakabayashi Y, Nakata K, Reed JC and Takahashi R: X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem. 276:27058–27063. 2001. View Article : Google Scholar : PubMed/NCBI | |
Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Srinivasula SM, Alnemri ES, Salvesen GS and Reed JC: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17:2215–2223. 1998. View Article : Google Scholar : PubMed/NCBI | |
Deveraux QL, Takahashi R, Salvesen GS and Reed JC: X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 388:300–304. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, Wang R, Fang X, Guo R, Zhang M, et al: Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem. 47:2430–2440. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hu R, Zhu K, Li Y, Yao K, Zhang R, Wang H, Yang W and Liu Z: Embelin induces apoptosis through down-regulation of XIAP in human leukemia cells. Med Oncol. 28:1584–1588. 2011. View Article : Google Scholar | |
Park N, Baek HS and Chun YJ: Embelin-Induced Apoptosis of Human Prostate Cancer Cells Is Mediated through Modulation of Akt and β-Catenin Signaling. PloS One. 10:e01347602015. View Article : Google Scholar | |
Shah P, Djisam R, Damulira H, Aganze A and Danquah M: Embelin inhibits proliferation, induces apoptosis and alters gene expression profiles in breast cancer cells. Pharmacol Rep. 68:638–644. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sumalatha KR, Abiramasundari G, Chetan GK, Divya T, Sudhandiran G and Sreepriya M: XIAP inhibitor and antiestrogen embelin abrogates metastasis and augments apoptosis in estrogen receptor positive human breast adenocarcinoma cell line MCF-7. Mol Biol Rep. 41:935–946. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Zhang B, Zhang J and Wu W and Wu W: Embelin-induced brain glioma cell apoptosis and cell cycle arrest via the mitochondrial pathway. Oncol Rep. 29:2473–2478. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang DG, Sun YB, Ye F, Li W, Kharbuja P, Gao L, Zhang DY and Suo J: Anti-tumor activity of the X-linked inhibitor of apoptosis (XIAP) inhibitor embelin in gastric cancer cells. Mol Cell Biochem. 386:143–152. 2014. View Article : Google Scholar | |
Xu CL, Zheng B, Pei JH, Shen SJ and Wang JZ: Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol Med Rep. 14:307–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng YJ, Jiang HS, Hsu SL, Lin LC, Wu CL, Ghanta VK and Hsueh CM: XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur J Pharmacol. 627:75–84. 2010. View Article : Google Scholar | |
Dai Y, Desano J, Qu Y, Tang W, Meng Y, Lawrence TS and Xu L: Natural IAP inhibitor Embelin enhances therapeutic efficacy of ionizing radiation in prostate cancer. Am J Cancer Res. 1:128–143. 2011.PubMed/NCBI | |
Allensworth JL, Aird KM, Aldrich AJ, Batinic-Haberle I and Devi GR: XIAP inhibition and generation of reactive oxygen species enhances TRAIL sensitivity in inflammatory breast cancer cells. Mol Cancer Ther. 11:1518–1527. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu R, Yang Y, Liu Z, Jiang H, Zhu K, Li J and Xu W: The XIAP inhibitor Embelin enhances TRAIL-induced apoptosis in human leukemia cells by DR4 and DR5 upregulation. Tumour Biol. 36:769–777. 2015. View Article : Google Scholar | |
Jiang L, Hao JL, Jin ML, Zhang YG and Wei P: Effect of Embelin on TRAIL receptor 2 mAb-induced apoptosis of TRAIL-resistant A549 non-small cell lung cancer cells. Asian Pac J Cancer Prev. 14:6115–6120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mori T, Doi R, Kida A, Nagai K, Kami K, Ito D, Toyoda E, Kawaguchi Y and Uemoto S: Effect of the XIAP inhibitor Embelin on TRAIL-induced apoptosis of pancreatic cancer cells. J Surg Res. 142:281–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Chen Y, Huang T, Liu T, Li X, Jiang G, Zhang W, Cheng S and Li P: Combined application of Embelin and tumor necrosis factor-related apoptosis-inducing ligand inhibits proliferation and invasion in osteosarcoma cells via caspase-induced apoptosis. Oncol Lett. 15:6931–6940. 2018.PubMed/NCBI | |
Siegelin MD, Gaiser T and Siegelin Y: The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem Int. 55:423–430. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Li SS, Yang XM, Yin DH and Wang L: Embelin prevents LMP1-induced TRAIL resistance via inhibition of XIAP in nasopharyngeal carcinoma cells. Oncol Lett. 11:4167–4176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Lan J, Huang Q, Chen X, Sun X, Liu X, Yang P, Jin T, Wang S and Mou X: Embelin sensitizes acute myeloid leukemia cells to TRAIL through XIAP inhibition and NF-κB inactivation. Cell Biochem Biophys. 71:291–297. 2015. View Article : Google Scholar | |
Yoshida S, Narita T, Koshida S, Ohta S and Takeuchi Y: TRAIL/Apo2L ligands induce apoptosis in malignant rhabdoid tumor cell lines. Pediatr Res. 54:709–717. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du C, Fang M, Li Y, Li L and Wang X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 102:33–42. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ekert PG, Silke J, Hawkins CJ, Verhagen AM and Vaux DL: DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol. 152:483–490. 2001. View Article : Google Scholar : PubMed/NCBI | |
Houghton PJ, Kang MH, Reynolds CP, Morton CL, Kolb EA, Gorlick R, Keir ST, Carol H, Lock R, Maris JM, et al: Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 58:636–639. 2012. View Article : Google Scholar : | |
Langemann D, Trochimiuk M, Appl B, Hundsdoerfer P, Reinshagen K and Eschenburg G: Sensitization of neuroblastoma for vincristine-induced apoptosis by Smac mimetic LCL161 is attended by G2 cell cycle arrest but is independent of NFκB, RIP1 and TNF-α. Oncotarget. 8:87763–87772. 2017. View Article : Google Scholar : PubMed/NCBI | |
Najem S, Langemann D, Appl B, Trochimiuk M, Hundsdoerfer P, Reinshagen K and Eschenburg G: Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L. Oncotarget. 7:72634–72653. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Zuo Y, Yang X, Lu J, Zhan L, Xu L, Zhang C, Zhu H, Liu J, Liu Z, et al: Smac mimetic compound LCL161 sensitizes esophageal carcinoma cells to radiotherapy by inhibiting the expression of inhibitor of apoptosis protein. Tumour Biol. 35:2565–2574. 2014. View Article : Google Scholar | |
Yang C, Wang H, Zhang B, Chen Y, Zhang Y, Sun X, Xiao G, Nan K, Ren H and Qin S: LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC. J Exp Clin Cancer Res. 35:1582016. View Article : Google Scholar : PubMed/NCBI | |
Clemens MR, Gladkov OA, Gartner E, Vladimirov V, Crown J, Steinberg J, Jie F and Keating A: Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat. 149:171–179. 2015. View Article : Google Scholar : | |
Kelly RJ, Thomas A, Rajan A, Chun G, Lopez-Chavez A, Szabo E, Spencer S, Carter CA, Guha U, Khozin S, et al: A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 24:2601–2606. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singh B, Guru SK, Sharma R, Bharate SS, Khan IA, Bhushan S, Bharate SB and Vishwakarma RA: Synthesis and anti-proliferative activities of new derivatives of embelin. Bioorg Med Chem Lett. 24:4865–4870. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, Taraborrelli L, Draber P, Lafont E, Arce Vargas F, et al: The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell. 65:730–742.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Henry CM and Martin SJ: Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory 'FADDosome' Complex upon TRAIL Stimulation. Mol Cell. 65:715–729.e5. 2017. View Article : Google Scholar | |
Lafont E, Kantari-Mimoun C, Draber P, De Miguel D, Hartwig T, Reichert M, Kupka S, Shimizu Y, Taraborrelli L, Spit M, et al: The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 36:1147–1166. 2017. View Article : Google Scholar : PubMed/NCBI | |
Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D and Ashkenazi A: Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem. 280:40599–40608. 2005. View Article : Google Scholar : PubMed/NCBI | |
von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, et al: Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell. 27:561–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Flusberg DA, Roux J, Spencer SL and Sorger PK: Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol Biol Cell. 24:2186–2200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hörnle M, Peters N, Thayaparasingham B, Vörsmann H, Kashkar H and Kulms D: Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene. 30:575–587. 2011. View Article : Google Scholar | |
Thayaparasingham B, Kunz A, Peters N and Kulms D: Sensitization of melanoma cells to TRAIL by UVB-induced and NF-kappaB-mediated downregulation of xIAP. Oncogene. 28:345–362. 2009. View Article : Google Scholar | |
Ma L, Huang Y, Song Z, Feng S, Tian X, Du W, Qiu X, Heese K and Wu M: Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway. Cell Death Differ. 13:2079–2088. 2006. View Article : Google Scholar : PubMed/NCBI | |
Abd-Elrahman I, Hershko K, Neuman T, Nachmias B, Perlman R and Ben-Yehuda D: The inhibitor of apoptosis protein Livin (ML-IAP) plays a dual role in tumorigenicity. Cancer Res. 69:5475–5480. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M, Peretz T, Mandelboim O and Ben-Yehuda D: Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: Implications for drug-resistant melanoma. Cancer Res. 63:6340–6349. 2003.PubMed/NCBI |