1
|
Welzel TM, McGlynn KA, Hsing AW, O'Brien
TR and Pfeiffer RM: Impact of classification of hilar
cholangiocarcinomas (Klatskin tumors) on the incidence of intra-
and extrahepatic cholangiocarcinoma in the United States. J Natl
Cancer Inst. 98:873–875. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rizvi S and Gores GJ: Pathogenesis,
diagnosis, and management of cholangiocarcinoma. Gastroenterology.
145:1215–1229. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Khan SA, Taylor-Robinson SD, Toledano MB,
Beck A, Elliott P and Thomas HC: Changing international trends in
mortality rates for liver, biliary and pancreatic tumours. J
Hepatol. 37:806–813. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jarnagin WR, Fong Y, DeMatteo RP, Gonen M,
Burke EC, Bodniewicz BS J, Youssef BA M, Klimstra D and Blumgart
LH: Staging, resectability, and outcome in 225 patients with hilar
cholangiocarcinoma. Ann Surg. 234:507–519. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Valle J, Wasan H, Palmer DH, Cunningham D,
Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira
SP, et al: ABC-02 Trial Investigators: Cisplatin plus gemcitabine
versus gemcitabine for biliary tract cancer. N Engl J Med.
362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jayson GC, Kerbel R, Ellis LM and Harris
AL: Antiangiogenic therapy in oncology: Current status and future
directions. Lancet. 388:518–529. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Butler JM, Kobayashi H and Rafii S:
Instructive role of the vascular niche in promoting tumour growth
and tissue repair by angiocrine factors. Nat Rev Cancer.
10:138–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim KJ, Li B, Winer J, Armanini M, Gillett
N, Phillips HS and Ferrara N: Inhibition of vascular endothelial
growth factor-induced angiogenesis suppresses tumour growth in
vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takahashi Y, Kitadai Y, Bucana CD, Cleary
KR and Ellis LM: Expression of vascular endothelial growth factor
and its receptor, KDR, correlates with vascularity, metastasis, and
proliferation of human colon cancer. Cancer Res. 55:3964–3968.
1995.PubMed/NCBI
|
11
|
Koh YW, Han JH, Yoon DH, Suh C and Huh J:
PD-L1 expression correlates with VEGF and microvessel density in
patients with uniformly treated classical Hodgkin lymphoma. Ann
Hematol. 96:1883–1890. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Benckert C, Thelen A, Cramer T, Weichert
W, Gaebelein G, Gessner R and Jonas S: Impact of microvessel
density on lymph node metastasis and survival after curative
resection of pancreatic cancer. Surg Today. 42:169–176. 2012.
View Article : Google Scholar
|
13
|
Tynninen O, Sjöström J, von Boguslawski K,
Bengtsson NO, Heikkilä R, Malmström P, Ostenstad B, Wist E, Valvere
V, Saksela E, et al: Tumour microvessel density as predictor of
chemotherapy response in breast cancer patients. Br J Cancer.
86:1905–1908. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang L, Zhou R, Zhao Y, Dong S, Zhang J,
Luo Y, Huang N, Shi M, Bin J, Liao Y, et al: MACC-1 promotes
endothelium-dependent angiogenesis in gastric cancer by activating
TWIST1/VEGF-A signal pathway. PLoS One. 11:e01571372016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Thelen A, Scholz A, Weichert W, Wiedenmann
B, Neuhaus P, Gessner R, Benckert C and Jonas S: Tumor-associated
angio-genesis and lymphangiogenesis correlate with progression of
intrahepatic cholangiocarcinoma. Am J Gastroenterol. 105:1123–1132.
2010. View Article : Google Scholar
|
16
|
Möbius C, Demuth C, Aigner T, Wiedmann M,
Wittekind C, Mössner J, Hauss J and Witzigmann H: Evaluation of
VEGF A expression and microvascular density as prognostic factors
in extrahepatic cholangiocarcinoma. Eur J Surg Oncol. 33:1025–1029.
2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li Y, Gao ZH and Qu XJ: The adverse
effects of sorafenib in patients with advanced cancers. Basic Clin
Pharmacol Toxicol. 116:216–221. 2015. View Article : Google Scholar
|
18
|
El-Khoueiry AB, Rankin CJ, Ben-Josef E,
Lenz HJ, Gold PJ, Hamilton RD, Govindarajan R, Eng C and Blanke CD:
SWOG 0514: A phase II study of sorafenib in patients with
unresectable or metastatic gallbladder carcinoma and
cholangio-carcinoma. Invest New Drugs. 30:1646–1651. 2012.
View Article : Google Scholar
|
19
|
Pan TT, Wang W, Jia WD and Xu GL: A
single-center experience of sorafenib monotherapy in patients with
advanced intrahepatic cholangiocarcinoma. Oncol Lett. 13:2957–2964.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Y, Li S, Zhu Y, Liang X, Meng H, Chen
J, Zhang D, Guo H and Shi B: Incidence and risk of
sorafenib-induced hypertension: A systematic review and
meta-analysis. J Clin Hypertens (Greenwich). 16:177–185. 2014.
View Article : Google Scholar
|
21
|
Abdel-Rahman O and ElHalawani H: Risk of
cardiovascular adverse events in patients with solid tumors treated
with ramu-cirumab: A meta analysis and summary of other VEGF
targeted agents. Crit Rev Oncol Hematol. 102:89–100. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Alexandrovich A, Qureishi A, Coudert AE,
Zhang L, Grigoriadis AE, Shah AM, Brewer AC and Pizzey JA: A role
for GATA-6 in vertebrate chondrogenesis. Dev Biol. 314:457–470.
2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Molkentin JD: The zinc finger-containing
transcription factors GATA-4, -5, and -6. Ubiquitously expressed
regulators of tissue-specific gene expression. J Biol Chem.
275:38949–38952. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pierce GB: The cancer cell and its control
by the embryo. Rous-Whipple Award lecture. Am J Pathol.
113:117–124. 1983.PubMed/NCBI
|
25
|
Sulahian R, Casey F, Shen J, Qian ZR, Shin
H, Ogino S, Weir BA, Vazquez F, Liu XS, Hahn WC, et al: An
integrative analysis reveals functional targets of GATA6
transcriptional regulation in gastric cancer. Oncogene.
33:5637–5648. 2014. View Article : Google Scholar :
|
26
|
Tsuji S, Kawasaki Y, Furukawa S, Taniue K,
Hayashi T, Okuno M, Hiyoshi M, Kitayama J and Akiyama T: The
miR-363 GATA6-Lgr5 pathway is critical for colorectal
tumourigenesis. Nat Commun. 5:31502014. View Article : Google Scholar
|
27
|
Chen WB, Huang FT, Zhuang YY, Tang J,
Zhuang XH, Cheng WJ, Gu ZQ and Zhang SN: Silencing of GATA6
suppresses SW 1990 pancreatic cancer cell growth in vitro and
up-regulates reactive oxygen species. Dig Dis Sci. 58:2518–2527.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Song Y, Tian T, Fu X, Wang W, Li S, Shi T,
Suo A, Ruan Z, Guo H and Yao Y: GATA6 is overexpressed in breast
cancer and promotes breast cancer cell epithelial-mesenchymal
transition by upregulating slug expression. Exp Mol Pathol.
99:617–627. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Froese N, Kattih B, Breitbart A, Grund A,
Geffers R, Molkentin JD, Kispert A, Wollert KC, Drexler H and
Heineke J: GATA6 promotes angiogenic function and survival in
endothelial cells by suppression of autocrine transforming growth
factor beta/activin receptor-like kinase 5 signaling. J Biol Chem.
286:5680–5690. 2011. View Article : Google Scholar
|
30
|
Hou R, Yan H, Niu X, Chang W, An P, Wang
C, Yang Y, Yan X, Li J, Liu R, et al: Gene expression profile of
dermal mesenchymal stem cells from patients with psoriasis. J Eur
Acad Dermatol Venereol. 28:1782–1791. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng CC, Chang SJ, Chueh YN, Huang TS,
Huang PH, Cheng SM, Tsai TN, Chen JW and Wang HW: Distinct
angio-genesis roles and surface markers of early and late
endothelial progenitor cells revealed by functional group analyses.
BMC Genomics. 14:1822013. View Article : Google Scholar
|
32
|
Kagan HM and Li W: Lysyl oxidase:
Properties, specificity, and biological roles inside and outside of
the cell. J Cell Biochem. 88:660–672. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hohenester E, Sasaki T and Timpl R:
Crystal structure of a scavenger receptor cysteine-rich domain
sheds light on an ancient superfamily. Nat Struct Biol. 6:228–232.
1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Peinado H, Del Carmen Iglesias-de la Cruz
M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A and
Portillo F: A molecular role for lysyl oxidase-like 2 enzyme in
snail regulation and tumor progression. EMBO J. 24:3446–3458. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Canesin G, Cuevas EP, Santos V,
López-Menéndez C, Moreno-Bueno G, Huang Y, Csiszar K, Portillo F,
Peinado H, Lyden D, et al: Lysyl oxidase-like 2 (LOXL2) and E47 EMT
factor: Novel partners in E-cadherin repression and early
metastasis colonization. Oncogene. 34:951–964. 2015. View Article : Google Scholar
|
36
|
Van Bergen T, Spangler R, Marshall D,
Hollanders K, Van de Veire S, Vandewalle E, Moons L, Herman J,
Smith V and Stalmans I: The role of LOX and LOXL2 in the
pathogenesis of an experimental model of choroidal
neovascularization. Invest Ophthalmol Vis Sci. 56:5280–5289. 2015.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zaffryar-Eilot S, Marshall D, Voloshin T,
Bar-Zion A, Spangler R, Kessler O, Ghermazien H, Brekhman V,
Suss-Toby E, Adam D, et al: Lysyl oxidase-like-2 promotes tumour
angio-genesis and is a potential therapeutic target in angiogenic
tumours. Carcinogenesis. 34:2370–2379. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tian F, Li D, Chen J, Liu W, Cai L, Li J,
Jiang P, Liu Z, Zhao X, Guo F, et al: Aberrant expression of GATA
binding protein 6 correlates with poor prognosis and promotes
metastasis in chol-angiocarcinoma. Eur J Cancer. 49:1771–1780.
2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xu J, Li D, Li X, Liu Z, Li T, Jiang P, He
Q, Tian F, Gao Y, Wang D, et al: 67 laminin receptor promotes the
malignant potential of tumour cells up-regulating lysyl
oxidase-like 2 expression in cholangiocarcinoma. Dig Liver Dis.
46:750–757. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Edge SBBD, Compton CC, Fritz AG, Greene FL
and Trotti A: AJCC Cancer Staging Manual. 7th edition. Springer;
New York, NY: 2010
|
41
|
Weidner N, Semple JP, Welch WR and Folkman
J: Tumor angio-genesis and metastasis - correlation in invasive
breast carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
43
|
Kim BR, Dong SM, Seo SH, Lee JH, Lee JM,
Lee SH and Rho SB: Lysyl oxidase-like 2 (LOXL2) controls
tumor-associated cell proliferation through the interaction with
MARCKSL1. Cell Signal. 26:1765–1773. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Anderson C and Kim R: Adjuvant therapy for
resected extra-hepatic cholangiocarcinoma: A review of the
literature and future directions. Cancer Treat Rev. 35:322–327.
2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
DeOliveira ML, Cunningham SC, Cameron JL,
Kamangar F, Winter JM, Lillemoe KD, Choti MA, Yeo CJ and Schulick
RD: Cholangiocarcinoma: Thirty-one-year experience with 564
patients at a single institution. Ann Surg. 245:755–762. 2007.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Yoshikawa D, Ojima H, Iwasaki M, Hiraoka
N, Kosuge T, Kasai S, Hirohashi S and Shibata T:
Clinicopathological and prognostic significance of EGFR, VEGF, and
HER2 expression in cholangiocarcinoma. Br J Cancer. 98:418–425.
2008. View Article : Google Scholar
|
47
|
Glaser SS, Gaudio E and Alpini G: Vascular
factors, angiogenesis and biliary tract disease. Curr Opin
Gastroenterol. 26:246–250. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xin M, Davis CA, Molkentin JD, Lien CL,
Duncan SA, Richardson JA and Olson EN: A threshold of GATA4 and
GATA6 expression is required for cardiovascular development. Proc
Natl Acad Sci USA. 103:11189–11194. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pierre M, Yoshimoto M, Huang L, Richardson
M and Yoder MC: VEGF and IHH rescue definitive hematopoiesis in
Gata-4 and Gata-6-deficient murine embryoid bodies. Exp Hematol.
37:1038–1053. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kawasaki Y, Matsumura K, Miyamoto M, Tsuji
S, Okuno M, Suda S, Hiyoshi M, Kitayama J and Akiyama T: REG4 is a
transcriptional target of GATA6 and is essential for colorectal
tumorigenesis. Sci Rep. 5:142912015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chia NY, Deng N, Das K, Huang D, Hu L, Zhu
Y, Lim KH, Lee MH, Wu J, Sam XX, et al: Regulatory crosstalk
between lineage-survival oncogenes KLF5, GATA4 and GATA6
cooperatively promotes gastric cancer development. Gut. 64:707–719.
2015. View Article : Google Scholar
|
52
|
Saito H, Papaconstantinou J, Sato H and
Goldstein S: Regulation of a novel gene encoding a lysyl
oxidase-related protein in cellular adhesion and senescence. J Biol
Chem. 272:8157–8160. 1997. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ahn SG, Dong SM, Oshima A, Kim WH, Lee HM,
Lee SA, Kwon SH, Lee JH, Lee JM, Jeong J, et al: LOXL2 expression
is associated with invasiveness and negatively influences survival
in breast cancer patients. Breast Cancer Res Treat. 141:89–99.
2013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Peinado H, Moreno-Bueno G, Hardisson D,
Pérez-Gómez E, Santos V, Mendiola M, de Diego JI, Nistal M,
Quintanilla M, Portillo F, et al: Lysyl oxidase-like 2 as a new
poor prognosis marker of squamous cell carcinomas. Cancer Res.
68:4541–4550. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Peng L, Ran YL, Hu H, Yu L, Liu Q, Zhou Z,
Sun YM, Sun LC, Pan J, Sun LX, et al: Secreted LOXL2 is a novel
therapeutic target that promotes gastric cancer metastasis via the
Src/FAK pathway. Carcinogenesis. 30:1660–1669. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Bignon M, Pichol-Thievend C, Hardouin J,
Malbouyres M, Bréchot N, Nasciutti L, Barret A, Teillon J, Guillon
E, Etienne E, et al: Lysyl oxidase-like protein-2 regulates
sprouting angiogenesis and type IV collagen assembly in the
endothelial basement membrane. Blood. 118:3979–3989. 2011.
View Article : Google Scholar : PubMed/NCBI
|