1
|
Fitzmaurice C, Allen C, Barber RM,
Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O,
Dandona R, Dandona L, et al: Regional, and national cancer
incidence, mortality, years of life lost, years lived with
disability, and disability-adjusted life-years for 32 cancer
groups, 1990 to 2015:. A systematic analysis for the global burden
of disease study JAMA Oncol. 3:524–548. 2017.
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bostwick DG, Burke HB, Djakiew D, Euling
S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters
DJ, et al: Human prostate cancer risk factors Cancer. 101(Suppl):
2371–2490. 2004.
|
4
|
DeMarzo AM, Nelson WG, Isaacs WB and
Epstein JI: Pathological and molecular aspects of prostate cancer.
Lancet. 361:955–964. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Howard N, Clementino M, Kim D, Wang L,
Verma A, Shi X, Zhang Z and DiPaola RS: New developments in
mechanisms of prostate cancer progression. Semin Cancer Biol. Sep
10–2018.(Epub ahead of print): S1044-579X(18)30079-8, 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Butcher DT, Alliston T and Weaver VM: A
tense situation: Forcing tumour progression. Nat Rev Cancer.
9:108–122. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu H, Mouw JK and Weaver VM: Forcing form
and function: Biomechanical regulation of tumor evolution. Trends
Cell Biol. 21:47–56. 2011. View Article : Google Scholar :
|
8
|
Hoyt K, Castaneda B, Zhang M, Nigwekar P,
di Sant'agnese PA, Joseph JV, Strang J, Rubens DJ and Parker KJ:
Tissue elasticity properties as biomarkers for prostate cancer.
Cancer Biomark. 4:213–225. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hegarty PK, Watson RW, Coffey RN, Webber
MM and Fitzpatrick JM: Effects of cyclic stretch on prostatic cells
in culture. J Urol. 168:2291–2295. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wadhera P: An introduction to acinar
pressures in BPH and prostate cancer. Nat Rev Urol. 10:358–366.
2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sottnik JL, Dai J, Zhang H, Campbell B and
Keller ET: Tumor-induced pressure in the bone microenvironment
causes osteocytes to promote the growth of prostate cancer bone
metastases. Cancer Res. 75:2151–2158. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Coste B, Mathur J, Schmidt M, Earley TJ,
Ranade S, Petrus MJ, Dubin AE and Patapoutian A: Piezo1 and Piezo2
are essential components of distinct mechanically activated cation
channels. Science. 330:55–60. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu J, Lewis AH and Grandl J: Touch,
tension, and transduction - the function and regulation of Piezo
ion channels. Trends Biochem Sci. 42:57–71. 2017. View Article : Google Scholar
|
14
|
Ranade SS, Woo SH, Dubin AE, Moshourab RA,
Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, et al:
Piezo2 is the major transducer of mechanical forces for touch
sensation in mice. Nature. 516:121–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ikeda R, Cha M, Ling J, Jia Z, Coyle D and
Gu JG: Merkel cells transduce and encode tactile stimuli to drive
Aβ-afferent impulses. Cell. 157:664–675. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li J, Hou B, Tumova S, Muraki K, Bruns A,
Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, et al: Piezo1
integration of vascular architecture with physiological force.
Nature. 515:279–282. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nonomura K, Woo SH, Chang RB, Gillich A,
Qiu Z, Francisco AG, Ranade SS, Liberles SD and Patapoutian A:
Piezo2 senses airway stretch and mediates lung inflation-induced
apnoea. Nature. 541:176–181. 2017. View Article : Google Scholar :
|
18
|
Murthy SE, Dubin AE and Patapoutian A:
Piezos thrive under pressure: Mechanically activated ion channels
in health and disease. Nat Rev Mol Cell Biol. 18:771–783. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy
SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, et al: Piezo1,
a mechanically activated ion channel, is required for vascular
development in mice. Proc Natl Acad Sci USA. 111:10347–10352. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Gudipaty SA, Lindblom J, Loftus PD, Redd
MJ, Edes K, Davey CF, Krishnegowda V and Rosenblatt J: Mechanical
stretch triggers rapid epithelial cell division through Piezo1.
Nature. 543:118–121. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
He L, Si G, Huang J, Samuel ADT and
Perrimon N: Mechanical regulation of stem-cell differentiation by
the stretch-activated Piezo channel. Nature. 555:103–106. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang XN, Lu YP, Liu JJ, Huang JK, Liu YP,
Xiao CX, Jazag A, Ren JL and Guleng B: Piezo1 is as a novel trefoil
factor family 1 binding protein that promotes gastric cancer cell
mobility in vitro. Dig Dis Sci. 59:1428–1435. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang T, Chi S, Jiang F, Zhao Q and Xiao
B: A protein interaction mechanism for suppressing the
mechanosensitive Piezo channels. Nat Commun. 8:17972017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)). Method Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Shah RB and Zhou M: Recent advances in
prostate cancer pathology: Gleason grading and beyond. Pathol Int.
66:260–272. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Booy EP, Henson ES and Gibson SB:
Epidermal growth factor regulates Mcl-1 expression through the
MAPK-Elk-1 signalling pathway contributing to cell survival in
breast cancer. Oncogene. 30:2367–2378. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bae C, Sachs F and Gottlieb PA: The
mechanosensitive ion channel Piezo1 is inhibited by the peptide
GsMTx4. Biochemistry. 50:6295–6300. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhong W, Peng J, He H, Wu D, Han Z, Bi X
and Dai Q: Ki-67 and PCNA expression in prostate cancer and benign
prostatic hyperplasia. Clin Invest Med. 31:E8–E15. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gnanasambandam R, Bae C, Gottlieb PA and
Sachs F: Ionic selectivity and permeation properties of human
PIEZO1 channels. PLoS One. 10:e01255032015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Roderick HL and Cook SJ: Ca2+
signalling checkpoints in cancer: Remodelling Ca2+ for
cancer cell proliferation and survival. Nat Rev Cancer. 8:361–375.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Monteith GR, Prevarskaya N and
Roberts-Thomson SJ: The calcium-cancer signalling nexus. Nat Rev
Cancer. 17:367–380. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mendoza MC, Er EE and Blenis J: The
Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends
Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Agell N, Bachs O, Rocamora N and
Villalonga P: Modulation of the Ras/Raf/MEK/ERK pathway by
Ca2+, and calmodulin. Cell Signal. 14:649–54. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Gocher AM, Azabdaftari G, Euscher LM, Dai
S, Karacosta LG, Franke TF and Edelman AM: Akt activation by
Ca2+/calmodulin-dependent protein kinase kinase 2
(CaMKK2) in ovarian cancer cells. J Biol Chem. 292:14188–14204.
2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang R, Zhu Y, Dong X, Liu B, Zhang N,
Wang X, Liu L, Xu C, Huang S and Chen L: Celastrol Attenuates
Cadmium-Induced Neuronal Apoptosis via Inhibiting Ca2+
-CaMKII-Dependent Akt/mTOR Pathway. J Cell Physiol. 232:2145–2157.
2017. View Article : Google Scholar
|
37
|
Li C, Rezania S, Kammerer S, Sokolowski A,
Devaney T, Gorischek A, Jahn S, Hackl H, Groschner K, Windpassinger
C, et al: Piezo1 forms mechanosensitive ion channels in the human
MCF-7 breast cancer cell line. Sci Rep. 5:83642015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen X, Wanggou S, Bodalia A, Zhu M, Dong
W, Fan JJ, Yin WC, Min HK, Hu M, Draghici D, et al: A feedforward
mechanism mediated by mechanosensitive ion channel PIEZO1 and
tissue mechanics promotes glioma aggression. Neuron.
100:799–815.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
McHugh BJ, Murdoch A, Haslett C and Sethi
T: Loss of the integrin-activating transmembrane protein Fam38A
(Piezo1) promotes a switch to a reduced integrin-dependent mode of
cell migration. PLoS One. 7:e403462012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Spier I, Kerick M, Drichel D, Horpaopan S,
Altmüller J, Laner A, Holzapfel S, Peters S, Adam R, Zhao B, et al:
Exome sequencing identifies potential novel candidate genes in
patients with unexplained colorectal adenomatous polyposis. Fam
Cancer. 15:281–288. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Miyamoto T, Mochizuki T, Nakagomi H, Kira
S, Watanabe M, Takayama Y, Suzuki Y, Koizumi S, Takeda M and
Tominaga M: Functional role for Piezo1 in stretch-evoked
Ca2 influx and ATP release in urothelial cell cultures.
J Biol Chem. 289:16565–16575. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Saxton RA and Sabatini DM: mTOR Signaling
in growth, metabolism, and disease. Cell. 168:960–976. 2017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang S, Chennupati R, Kaur H, Iring A,
Wettschureck N and Offermanns S: Endothelial cation channel PIEZO1
controls blood pressure by mediating flow-induced ATP release. J
Clin Invest. 126:4527–4536. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
45
|
Yano S, Tokumitsu H and Soderling TR:
Calcium promotes cell survival through CaM-K kinase activation of
the protein-kinase-B pathway. Nature. 396:584–587. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada
N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M,
et al: Blockage of Ca(2+)-permeable AMPA receptors suppresses
migration and induces apoptosis in human glioblastoma cells. Nat
Med. 8:971–978. 2002. View
Article : Google Scholar : PubMed/NCBI
|
47
|
Ishiuchi S, Yoshida Y, Sugawara K, Aihara
M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, et
al: Ca2+-permeable AMPA receptors regulate growth of
human glioblastoma via Akt activation. J Neurosci. 27:7987–8001.
2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Valerie NC, Dziegielewska B, Hosing AS,
Augustin E, Gray LS, Brautigan DL, Larner JM and Dziegielewski J:
Inhibition of T-type calcium channels disrupts Akt signaling and
promotes apoptosis in glioblastoma cells. Biochem Pharmacol.
85:888–897. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Gao Q, Cooper PR, Walmsley AD and Scheven
BA: Role of Piezo channels in ultrasound-stimulated dental stem
cells. J Endod. 43:1130–1136. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zimmermann S and Moelling K:
Phosphorylation and regulation of Raf by Akt (protein kinase B).
Science. 286:1741–1744. 1999. View Article : Google Scholar : PubMed/NCBI
|
51
|
Diehl JA, Cheng M, Roussel MF and Sherr
CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis
and subcellular localization. Genes Dev. 12:3499–3511. 1998.
View Article : Google Scholar : PubMed/NCBI
|