Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review)
- Authors:
- Judit Alarcón‑Millán
- Dinorah Nashely Martínez‑Carrillo
- Oscar Peralta‑Zaragoza
- Gloria Fernández‑Tilapa
-
Affiliations: Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México, Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México - Published online on: July 16, 2019 https://doi.org/10.3892/ijo.2019.4843
- Pages: 555-569
This article is mentioned in:
Abstract
Khurana S and Mills JC: The gastric mucosa development and differentiation. Prog Mol Biol Transl Sci. 96:93–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dimaline R and Varro A: Attack and defence in the gastric epithelium - a delicate balance. Exp Physiol. 92:591–601. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann W: Self-renewal of the gastric ephitelium from stem and progenitor cells. Front Biosci. S5:720–731. 2013. View Article : Google Scholar | |
Mueller A, Merrell DS, Grimm J and Falkow S: Profiling of microdissected gastric epithelial cells reveals a cell type-specific response to Helicobacter pylori infection. Gastroenterology. 127:1446–1462. 2004. View Article : Google Scholar : PubMed/NCBI | |
Silen W and Ito S: Mechanisms for rapid re-epithelialization of the gastric mucosal surface. Annu Rev Physiol. 47:217–229. 1985. View Article : Google Scholar : PubMed/NCBI | |
Menheniott TR, Kurklu B and Giraud AS: Gastrokines: Stomach-specific proteins with putative homeostatic and tumor suppressor roles. Am J Physiol Gastrointest Liver Physiol. 304:G109–G121. 2013. View Article : Google Scholar | |
Rippa E, La Monica G, Allocca R, Romano MF, De Palma M and Arcari P: Overexpression of gastrokine 1 in gastric cancer cells induces Fas-mediated apoptosis. J Cell Physiol. 226:2571–2578. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Choi YJ, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY and Park WS: GKN1-miR-185-DNMT1 axis suppresses gastric carcinogenesis through regulation of epigenetic alteration and cell cycle. Clin Cancer Res. 19:4599–4610. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Cho ML, Choi YJ, Back JY, Park MK, Lee SW, Choi BJ, Ashktorab H, Smoot DT, Nam SW, et al: Gastrokine 1 regulates NF-κB signaling pathway and cytokine expression in gastric cancers. J Cell Biochem. 114:1800–1809. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY and Park WS: GKN2 contributes to the homeostasis of gastric mucosa by inhibiting GKN1 activity. J Cell Physiol. 229:762–771. 2014. View Article : Google Scholar | |
Yoon JH, Seo HS, Choi WS, Kim O, Nam SW, Lee JY and Park WS: Gastrokine 1 induces senescence and apoptosis through regulating telomere length in gastric cancer. Oncotarget. 5:11695–11708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Li YC and Toback FG: AMP-18 targets p21 to maintain epithelial homeostasis. PLoS One. 10:e01254902015. View Article : Google Scholar : PubMed/NCBI | |
Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY and Park WS: Gastrokine 1 inhibits gastrin-induced cell proliferation. Gastric Cancer. 19:381–391. 2016. View Article : Google Scholar | |
Rippa E, Altieri F, Di Stadio CS, Miselli G, Lamberti A, Federico A, Quagliariello V, Papale F, Guerra G and Arcari P: Ectopic expression of gastrokine 1 in gastric cancer cells up-regulates tight and adherens junction proteins network. Pathol Res Pract. 211:577–583. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xing R, Cui JT, Xia N and Lu YY: GKN1 inhibits cell invasion in gastric cancer by inactivating the NF-kappaB pathway. Discov Med. 19:65–71. 2015.PubMed/NCBI | |
Yoon JH, Choi WS, Kim O, Choi BJ, Nam SW, Lee JY and Park WS: Gastrokine 1 inhibits gastric cancer cell migration and invasion by downregulating RhoA expression. Gastric Cancer. 20:274–285. 2017. View Article : Google Scholar | |
Nardone G, Martin G, Rocco A, Rippa E, La Monica G, Caruso F and Arcari P: Molecular expression of Gastrokine 1 in normal mucosa and in Helicobacter pylori-related preneoplastic and neoplastic gastric lesions. Cancer Biol Ther. 7:1890–1895. 2008. View Article : Google Scholar : PubMed/NCBI | |
He QY, Cheung YH, Leung SY, Yuen ST, Chu KM and Chiu JF: Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 4:3276–3287. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moss SF, Lee JW, Sabo E, Rubin AK, Rommel J, Westley BR, May FE, Gao J, Meitner PA, Tavares R, et al: Decreased expression of gastrokine 1 and the trefoil factor interacting protein TFIZ1/GKN2 in gastric cancer: Influence of tumor histology and relationship to prognosis. Clin Cancer Res. 14:4161–4167. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW, Lee JY and Park WS: Inactivation of the Gastrokine 1 gene in gastric adenomas and carcinomas. J Pathol. 223:618–625. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mao W, Chen J, Peng TL, Yin XF, Chen LZ and Chen MH: Downregulation of gastrokine-1 in gastric cancer tissues and restoration of its expression induced gastric cancer cells to apoptosis. J Exp Clin Cancer Res. 31:49–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiao JW, Chen JH, Ren MY, Tian XB and Wang CS: Relationship between expression of gastrokine 1 and clinicopathological characteristics in gastric cancer patients. Asian Pac J Cancer Prev. 13:5897–5901. 2012. View Article : Google Scholar | |
Choi WS, Seo HS, Song KY, Yoon JH, Kim O, Nam SW, Lee JY and Park WS: Gastrokine 1 expression in the human gastric mucosa is closely associated with the degree of gastritis and DNA methylation. J Gastric Cancer. 13:232–241. 2013. View Article : Google Scholar | |
Guo XY, Dong L, Qin B, Jiang J and Shi AM: Decreased expression of gastrokine 1 in gastric mucosa of gastric cancer patients. World J Gastroenterol. 20:16702–16706. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hasan AA, Igci M, Borazan E, Khailany RA, Bayraktar E and Arslan A: Down-regulated gene expression of GKN1 and GKN2 as diagnostic markers for gastric cancer. WASET9. 532–535. 2015. | |
Altieri F, Di Stadio CS, Federico A, Miselli G, De Palma M, Rippa E and Arcari P: Epigenetic alterations of gastrokine 1 gene expression in gastric cancer. Oncotarget. 8:16899–16911. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Jiang N, Cao QW, Ma MQ and Sun Q: The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1. Biochem Biophys Res Commun. 478:1624–1629. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L, Davuluri RV and Lieberman PM: Genome-wide analysis of host-chromosome binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA1). Virol J. 7:2622010. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Tempera I, Lee HT, Dewispelaere K and Lieberman PM: EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells. Virol J. 11:122014. View Article : Google Scholar : PubMed/NCBI | |
Nardone G, Rippa E, Martin G, Rocco A, Siciliano RA, Fiengo A, Cacace G, Malorni A, Budillon G and Arcari P: Gastrokine 1 expression in patients with and without Helicobacter pylori infection. Dig Liver Dis. 39:122–129. 2007. View Article : Google Scholar | |
Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T and Kohno S: MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 128:361–370. 2011. View Article : Google Scholar | |
Lario S, Ramírez-Lázaro MJ, Aransay AM, Lozano JJ, Montserrat A, Casalots Á, Junquera F, Álvarez J, Segura F, Campo R, et al: microRNA profiling in duodenal ulcer disease caused by Helicobacter pylori infection in a Western population. Clin Microbiol Infect. 18:E273–E282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, Yoon H, Shin CM, Park YS, Kim JM, et al: Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver. 9:188–196. 2015. View Article : Google Scholar : | |
Zhu Y, Jiang Q, Lou X, Ji X, Wen Z, Wu J, Tao H, Jiang T, He W, Wang C, et al: MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS One. 7:e351472012. View Article : Google Scholar : PubMed/NCBI | |
Santos JC, Brianti MT, Almeida VR, Ortega MM, Fischer W, Haas R, Matheu A and Ribeiro ML: Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol Carcinog. 56:1372–1379. 2017. View Article : Google Scholar | |
Chung JW, Jeong SH, Lee SM, Pak JH, Lee GH, Jeong JY and Kim JH: Expression of microRNA in host cells infected with Helicobacter pylori. Gut Liver. 11:392–400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sugihara H, Ishimoto T, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, Komohara Y, Takeya M and Baba H: Identification of miR-30e* regulation of Bmi1 expression mediated by tumor-associated macrophages in gastrointestinal cancer. PLoS One. 8:e818392013. View Article : Google Scholar | |
Stumpfova Z, Hezova R, Meli AC, Slaby O and Michalek J: MicroRNA profiling of activated and tolerogenic human dendritic cells. Mediators Inflamm. 2014:259689–259699. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teteloshvili N, Smigielska-Czepiel K, Kroesen BJ, Brouwer E, Kluiver J, Boots AM and van den Berg A: T-cell activation induces dynamic changes in miRNA expression patterns in CD4 and CD8 T-cell subsets. MicroRNA. 4:117–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Pulido L, Devos D and Valencia A: BRICHOS: A conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci. 27:329–332. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hedlund J, Johansson J and Persson B: BRICHOS - a super-family of multidomain proteins with diverse functions. BMC Res Notes. 2:180–189. 2009. View Article : Google Scholar | |
Pavone LM, Del Vecchio P, Mallardo P, Altieri F, De Pasquale V, Rea S, Martucci NM, Di Stadio CS, Pucci P, Flagiello A, et al: Structural characterization and biological properties of human gastrokine 1. Mol Biosyst. 9:412–421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Choi YJ, Choi WS, Nam SW, Lee JY and Park WS: Functional analysis of the NH2-terminal hydrophobic region and BRICHOS domain of GKN1. Biochem Biophys Res Commun. 440:689–695. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dokhaee F, Mazhari S, Galehdari M, Bahadori Monfared A and Baghaei K: Evaluation of GKN1 and GKN2 gene expression as a biomarker of gastric cancer. Gastroenterol Hepatol Bed Bench. 11(Suppl 1): S140–S145. 2018. | |
Toback FG, Walsh-Reitz MM, Musch MW, Chang EB, Del Valle J, Ren H, Huang E and Martin TE: Peptide fragments of AMP-18, a novel secreted gastric antrum mucosal protein, are mitogenic and motogenic. Am J Physiol Gastrointest Liver Physiol. 285:G344–G353. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xing R, Li W, Cui J, Zhang J, Kang B, Wang Y, Wang Z, Liu S and Lu Y: Gastrokine 1 induces senescence through p16/Rb pathway activation in gastric cancer cells. Gut. 61:43–52. 2012. View Article : Google Scholar | |
Conteduca V, Sansonno D, Lauletta G, Russi S, Ingravallo G and Dammacco F: H. pylori infection and gastric cancer: State of the art (review). Int J Oncol. 42:5–18. 2013. View Article : Google Scholar | |
Yoon JH, Seo HS, Choi SS, Chae HS, Choi WS, Kim O, Ashktorab H, Smoot DT, Nam SW, Lee JY, et al: Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA. Carcinogenesis. 35:2619–2629. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa Y, Mukai H, Hino F, Asada K and Kato I: Isolation of two novel genes, down-regulated in gastric cancer. Jpn J Cancer Res. 91:459–463. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shiozaki K, Nakamori S, Tsujie M, Okami J, Yamamoto H, Nagano H, Dono K, Umeshita K, Sakon M, Furukawa H, et al: Human stomach-specific gene, CA11, is down-regulated in gastric cancer. Int J Oncol. 19:701–707. 2001.PubMed/NCBI | |
Oien KA, Vass JK, Downie I, Fullarton G and Keith WN: Profiling, comparison and validation of gene expression in gastric carcinoma and normal stomach. Oncogene. 22:4287–4300. 2003. View Article : Google Scholar : PubMed/NCBI | |
Oien KA, McGregor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S and Keith WN: Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol. 203:789–797. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koper-Lenkiewicz OM, Kamińska J, Gawrońska B and Matowicka-Karna J: The role and diagnostic potential of gastrokine 1 in gastric cancer. Cancer Manag Res. 11:1921–1931. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zamanian-Azodi M, Rezaei-Tavirani M, Hasanzadeh H, Rahmati Rad S and Dalilan S: Introducing biomarker panel in esophageal, gastric, and colon cancers; a proteomic approach. Gastroenterol Hepatol Bed Bench. 8:6–18. 2015.PubMed/NCBI | |
Villano V, Di Stadio CS, Federico A, Altieri F, Miselli G, De Palma M, Rippa E and Arcari P: Gastrokine 1 mRNA in human sera is not informative biomarker for gastric cancer. J Negat Results Biomed. 15:142016. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Ham IH, Kim O, Ashktorab H, Smoot DT, Nam SW, Lee JY, Hur H and Park WS: Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer. 21:956–967. 2018. View Article : Google Scholar : PubMed/NCBI | |
Noguchi T, Wirtz HC, Michaelis S, Gabbert HE and Mueller W: Chromosomal imbalances in gastric cancer. Correlation with histologic subtypes and tumor progression. Am J Clin Pathol. 115:828–834. 2001. View Article : Google Scholar : PubMed/NCBI | |
Panani AD: Cytogenetic and molecular aspects of gastric cancer: Clinical implications. Cancer Lett. 266:99–115. 2008. View Article : Google Scholar : PubMed/NCBI | |
Orphanides G and Reinberg D: A unified theory of gene expression. Cell. 108:439–451. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shilatifard A: Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu Rev Biochem. 75:243–269. 2006. View Article : Google Scholar : PubMed/NCBI | |
Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar : | |
Levine M and Tjian R: Transcription regulation and animal diversity. Nature. 424:147–151. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 175:598–599. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Choi WS, Kim O, Choi SS, Lee EK, Nam SW, Lee JY and Park WS: NKX6.3 controls gastric differentiation and tumorigenesis. Oncotarget. 6:28425–28439. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M and Werner T: MatInspector and beyond: Promoter analysis based on transcription factor binding sites. Bioinformatics. 21:2933–2942. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grabe N: AliBaba2: Context specific identification of transcription factor binding sites. In Silico Biol. 2:S1–S15. 2002.PubMed/NCBI | |
Ghosh D: Object-oriented transcription factors database (ooTFD). Nucleic Acids Res. 28:308–310. 2000. View Article : Google Scholar | |
Strowski MZ, Cramer T, Schäfer G, Jüttner S, Walduck A, Schipani E, Kemmner W, Wessler S, Wunder C, Weber M, et al: Helicobacter pylori stimulates host vascular endothelial growth factor-A (vegf-A) gene expression via MEK/ERK-dependent activation of Sp1 and Sp3. FASEB J. 18:218–220. 2004. View Article : Google Scholar | |
Mitsuno Y, Yoshida H, Maeda S, Ogura K, Hirata Y, Kawabe T, Shiratori Y and Omata M: Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut. 49:18–22. 2001. View Article : Google Scholar : PubMed/NCBI | |
Han JC, Zhang KL, Chen XY, Jiang HF, Kong QY, Sun Y, Wu ML, Huang L, Li H and Liu J: Expression of seven gastric cancer-associated genes and its relevance for Wnt, NF-kappaB and Stat3 signaling. APMIS. 115:1331–1343. 2007. View Article : Google Scholar | |
Xiong H, Du W, Sun TT, Lin YW, Wang JL, Hong J and Fang JY: A positive feedback loop between STAT3 and cyclooxygenase-2 gene may contribute to Helicobacter pylori-associated human gastric tumorigenesis. Int J Cancer. 134:2030–2040. 2014. View Article : Google Scholar | |
Hu TZ, Huang LH, Xu CX, Liu XM, Wang Y, Xiao J, Zhou L, Luo L and Jiang XX: Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis. Med Oncol. 32:2652015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Cao K, Xu C, Hu T, Zhou L, Cao D, Xiao J, Luo L, Guo Y and Qi Y: GATA-3 augmentation down-regulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis. Cancer Biol Ther. 16:987–996. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, et al: OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut. 64:37–48. 2015. View Article : Google Scholar : | |
Xu G, Li K, Zhang N, Zhu B and Feng G: Screening driving transcription factors in the processing of gastric cancer. Gastroenterol Res Pract. 2016:84314802016. View Article : Google Scholar : PubMed/NCBI | |
Shakya A, Cooksey R, Cox JE, Wang V, McClain DA and Tantin D: Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol. 11:320–327. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Ma LQ, Bai PS, Da R, Sun H, Qi XG, Ma JQ, Zhao RM, Chen NZ and Nan KJ: Helicobacter pylori promotes invasion and metastasis of gastric cancer cells through activation of AP-1 and up-regulation of CACUL1. Int J Biochem Cell Biol. 45:2666–2678. 2013. View Article : Google Scholar : PubMed/NCBI | |
Regalo G, Resende C, Wen X, Gomes B, Durães C, Seruca R, Carneiro F and Machado JC: C/EBP α expression is associated with homeostasis of the gastric epithelium and with gastric carcinogenesis. Lab Invest. 90:1132–1139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L and Giraud AS: Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol. 213:140–151. 2007. View Article : Google Scholar : PubMed/NCBI | |
O'Reilly LA, Putoczki TL, Mielke LA, Low JT, Lin A, Preaudet A, Herold MJ, Yaprianto K, Tai L, Kueh A, et al: Loss of NF-κB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1 dependent manner. Immunity. 48:570–583.e8. 2018. View Article : Google Scholar | |
Zhang J, Zhu ZG, Ji J, Yuan F, Yu YY, Liu BY and Lin YZ: Transcription factor Sp1 expression in gastric cancer and its relationship to long-term prognosis. World J Gastroenterol. 11:2213–2217. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jüttner S, Cramer T, Wessler S, Walduck A, Gao F, Schmitz F, Wunder C, Weber M, Fischer SM, Schmidt WE, et al: Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: Critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell Microbiol. 5:821–834. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Wu JY, Kudo T, Ohno T, Graham DY and Yamaoka Y: Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori. Mol Biol Cell. 16:4954–4966. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bronte-Tinkew DM, Terebiznik M, Franco A, Ang M, Ahn D, Mimuro H, Sasakawa C, Ropeleski MJ, Peek RM Jr and Jones NL: Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res. 69:632–639. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Dong Y, Kang W, Go MY, Tong JH, Ng EK, Chiu PW, Cheng AS, To KF, Sung JJ, et al: Helicobacter pylori-induced STAT3 activation and signalling network in gastric cancer. Oncoscience. 1:468–475. 2014. View Article : Google Scholar | |
Piao JY, Lee HG, Kim SJ, Kim DH, Han HJ, Ngo HK, Park SA, Woo JH, Lee JS, Na HK, et al: Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: Potential roles for reactive oxygen species. Helicobacter. 21:405–416. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama K, Higashi H, Ishikawa S, Fujii Y, Kondo S, Kato H, Azuma T, Wada A, Hirayama T, Aburatani H, et al: Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci USA. 102:9661–9666. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Tang N, Wang C, Xiao L, Yu M, Zhao L, Cai H, Han L, Xie C and Zhang Y: TNF-α-inducing protein of Helicobacter pylori induces epithelial-mesenchymal transition (EMT) in gastric cancer cells through activation of IL-6/STAT3 signaling pathway. Biochem Biophys Res Commun. 484:311–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mejías-Luque R, Peiró S, Vincent A, Van Seuningen I and de Bolós C: IL-6 induces MUC4 expression through gp130/STAT3 p athway in gastric cancer cell lines. Biochim Biophys Acta. 1783:1728–1736. 2008. View Article : Google Scholar | |
Chang YJ, Wu MS, Lin JT and Chen CC: Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxy-genase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol. 175:8242–8252. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee KS, Kalantzis A, Jackson CB, O'Connor L, Murata-Kamiya N, Hatakeyama M, Judd LM, Giraud AS and Menheniott TR: Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3γ via gastric STAT3 activation. PLoS One. 7:e307862012. View Article : Google Scholar | |
Yamaoka Y, Kudo T, Lu H, Casola A, Brasier AR and Graham DY: Role of interferon-stimulated responsive element-like element in interleukin-8p romoter in Helicobacter pylori infection. Gastroenterology. 126:1030–1043. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mitchell DJ, Huynh HQ, Ceponis PJM, Jones NL and Sherman PM: Helicobacter pylori disrupts STAT1-mediated gamma interferon-induced signal transduction in epithelial cells. Infect Immun. 72:537–545. 2004. View Article : Google Scholar : | |
Lee HS, Park CK, Oh E, Erkin ÖC, Jung HS, Cho MH, Kwon MJ, Chae SW, Kim SH, Wang LH, et al: Low SP1 expression differentially affects intestinal-type compared with diffuse-type gastric adenocarcinoma. PLoS One. 8:e555222013. View Article : Google Scholar : PubMed/NCBI | |
Beishline K and Azizkhan-Clifford J: Sp1 and the 'hallmarks of cancer'. FEBS J. 282:224–258. 2015. View Article : Google Scholar | |
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S and Ishige N: CCAAT/enhancer-binding protein α decreases the viability of gastric cancer cells. Oncol Lett. 13:4322–4326. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peterson CL and Laniel MA: Histones and histone modifications. Curr Biol. 14:R546–R551. 2004. View Article : Google Scholar : PubMed/NCBI | |
Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife. 4:e050052015. View Article : Google Scholar : | |
John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human microRNA targets. PLoS Biol. 3:e2642005. View Article : Google Scholar | |
Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43D:D146–D152. 2015. View Article : Google Scholar | |
Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC and Chuang EY: miRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 7:e423902012. View Article : Google Scholar : PubMed/NCBI | |
Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, et al: DIANA-microT web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res. 37(Web Server): W273–6. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sethupathy P, Megraw M and Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 3:881–886. 2006. View Article : Google Scholar : PubMed/NCBI | |
Leitão AL, Costa MC and Enguita FJ: A guide for miRNA target prediction and analysis using web-based applications. Methods Mol Biol. 1182:265–277. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhi Q, Guo X, Guo L, Zhang R, Jiang J, Ji J, Zhang J, Zhang J, Chen X, Cai Q, et al: Oncogenic miR-544 is an important molecular target in gastric cancer. Anticancer Agents Med Chem. 13:270–275. 2013. View Article : Google Scholar | |
Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG, Sierra JC, Hardbower DM, Delgado AG, Schneider BG, et al: Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene. 34:3429–3440. 2015. View Article : Google Scholar : | |
Ishimoto T, Sugihara H, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, Okabe H, Hidaka K, Yokoyama N, Miyake K, et al: Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation. Carcinogenesis. 35:1003–1011. 2014. View Article : Google Scholar | |
Libânio D, Dinis-Ribeiro M and Pimentel-Nunes P: Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol. 6:111–132. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Peng Y, Jin Z, Huang W, Cheng Y, Liu Y, Feng X, Yang M, Huang Y, Zhao Z, et al: Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma. Oncotarget. 6:32878–32889. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Dahlberg JE and Tam W: MicroRNAs in tumori-genesis: A primer. Am J Pathol. 171:728–738. 2007. View Article : Google Scholar : PubMed/NCBI | |
Noto JM and Peek RM: The role of microRNAs in Helicobacter pylori pathogenesis and gastric carcinogenesis. Front Cell Infect Microbiol. 1:212012. View Article : Google Scholar : | |
Li N, Xu X, Xiao B, Zhu ED, Li BS, Liu Z, Tang B, Zou QM, Liang HP and Mao XH: H. pylori related proinflammatory cytokines contribute to the induction of miR-146a in human gastric epithelial cells. Mol Biol Rep. 39:4655–4661. 2012. View Article : Google Scholar | |
Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, et al: CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut. 62:1536–1546. 2013. View Article : Google Scholar | |
Qi J and Ronai ZA: Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat. 23:1–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cho CH, Yu J and Wu WKK: Identification of pathogenic microRNAs in Helicobacter pylori-associated gastric cancer using a combined approach of animal study and clinical sample analysis. Hong Kong Med J. 22(Suppl 6): 13–18. 2016.PubMed/NCBI | |
Belair C, Baud J, Chabas S, Sharma CM, Vogel J, Staedel C and Darfeuille F: Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence. 2:72011. View Article : Google Scholar : PubMed/NCBI | |
Lauren P: The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI | |
Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen XH, Yu YY, Gu QL, Zhu ZG and Liu BY: microrna expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep. 6:821–826. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D and Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, et al: Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 11:136–146. 2010. View Article : Google Scholar | |
Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M, et al: MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J, Yang Q, Xu Y and Li F: Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. Int Immunopharmacol. 13:468–475. 2012. View Article : Google Scholar : PubMed/NCBI | |
Juzėnas S, Saltenienė V, Kupcinskas J, Link A, Kiudelis G, Jonaitis L, Jarmalaite S, Kupcinskas L, Malfertheiner P and Skieceviciene J: Correction: Analysis of deregulated microRNAs and their target genes in gastric cancer. PLoS One. 10:e01357622015. View Article : Google Scholar | |
Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, Ogawa R, Harata K and Fujii Y: MicroRNA expression profile in undifferentiated gastric cancer. Int J Oncol. 34:537–542. 2009.PubMed/NCBI |